Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 859(Pt 1): 160141, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36395832

RESUMEN

Methanotrophic bacteria represent an appealing opportunity to convert methane, a potent greenhouse gas, into a highly nutritious animal feed ingredient, single-cell protein (SCP). SCP has a comparable or superior nutritional profile that to most conventional protein sources and can be produced within a lower environmental footprint. The present study investigated the effect of replacing fishmeal (FM) with methanotrophic SCP in diets for barramundi (Lates calcarifer), a carnivorous fish with a high demand for dietary protein and energy. Dietary inclusion levels of 0 %, 10 %, 20 % and 30 % SCP (representing 0, 25, 50 and 75 % FM replacement) were tested, with and without additives. Triplicate groups of juvenile barramundi were fed the diets over 31 days. The inclusion of SCP significantly improved weight gain and feed conversion efficiency (FCE). Dietary SCP inclusion supported good gut health, with decreasing trends of hepatosomatic index, improved plasma biochemistry, and no adverse histopathological changes. Barramundi fed the SCP diets showed an intact intestinal barrier and a significant improvement in villi and lamina propria area when fed the additive supplemented SCP diets. This study demonstrates that this SCP is highly palatable to barramundi (even without dietary additives) and can replace up to 75 % FM with significant improvements in growth and FCE.


Asunto(s)
Alimentación Animal , Perciformes , Animales , Alimentación Animal/análisis , Acuicultura , Proteínas en la Dieta , Dieta
2.
Probiotics Antimicrob Proteins ; 14(4): 620-629, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35612776

RESUMEN

Rotifers are used as the first feed for marine fish larvae and are grown in large cultures that have high loads of organic matter and heterotrophic bacteria; these bacteria are passed on to the developing fish larvae and can potentially lead to bacterial infections. A modified minimum inhibitory concentration (MIC) protocol for antimicrobial peptides was used to determine the potency of ten antimicrobial peptides (AMPs) in artificial seawater relevant to a rotifer culture (salinity of 25‰) against common marine pathogens. All of the AMPs had antimicrobial activity against the bacterial isolates when the salt concentration was approximately zero. However, in high salt concentrations, the majority of the AMPs had an MIC value greater than 65 µg mL-1 in artificial seawater (25‰). The only exceptions were 2009 (32.5 µg mL-1) and 3002 (32.5 µg mL-1) against Vibrio rotiferianus and Tenacibaculum discolor, respectively. The selected synthetic AMPs were not effective at reducing the bacterial load in brackish salt concentrations of a typical commercial rotifer culture (25‰).


Asunto(s)
Péptidos Antimicrobianos , Rotíferos , Animales , Larva/microbiología , Rotíferos/microbiología , Agua de Mar
3.
Mar Drugs ; 20(5)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35621974

RESUMEN

Praziquantel (PZQ) provides an effective treatment against monogenean parasitic infestations in finfish. However, its use as an in-feed treatment is challenging due to palatability issues. In this study, five formulations of PZQ beads (1−4 mm) were developed using marine-based polymers, with allicin added as a flavouring agent. All formulations attained PZQ loading rates ≥74% w/w, and the beads were successfully incorporated into fish feed pellets at an active dietary inclusion level of 10 g/kg. When tested for palatability and digestibility in small yellowtail kingfish, the PZQ-loaded beads produced with alginate-chitosan, alginate-Cremophor® RH40, and agar as carriers resulted in high consumption rates of 99−100% with no digesta or evidence of beads in the gastrointestinal tract (GIT) of fish fed with diets containing either formulation. Two formulations produced using chitosan-based carriers resulted in lower consumption rates of 68−75%, with undigested and partly digested beads found in the fish GIT 3 h post feeding. The PZQ-loaded alginate-chitosan and agar beads also showed good palatability in large (≥2 kg) yellowtail kingfish infected with gill parasites and were efficacious in removing the parasites from the fish, achieving >90% reduction in mean abundance relative to control fish (p < 0.001). The two effective formulations were stable upon storage at ambient temperature for up to 18 months, showing residual drug content >90% compared with baseline levels. Overall, the palatability, efficacy and stability data collected from this study suggest that these two PZQ particulate formulations have potential applications as in-feed anti-parasitic medications for the yellowtail kingfish farming industry.


Asunto(s)
Antihelmínticos , Quitosano , Perciformes , Agar , Alginatos , Animales , Antihelmínticos/farmacología , Acuicultura , Peces , Praziquantel/farmacología , Praziquantel/uso terapéutico
4.
Artículo en Inglés | MEDLINE | ID: mdl-30543863

RESUMEN

In an effort to overcome the palatability issues currently constraining the effective delivery of praziquantel (PZQ) via feed to treat monogenean parasites in yellowtail kingfish, this study compared the bioavailability and palatability of PZQ in hydrogenated castor oil (HCO) solid lipid nanoparticles (SLN) against pure PZQ in this species. Improving bioavailability would facilitate lower dietary inclusion levels to achieve the same therapeutic dose and therefore reduce the bitterness of feeds containing PZQ. Bioavailability was determined by co-administering feed with either pure PZQ, HCO-SLN or HCO-SLN coated with chitosan via intubation and quantifying the pharmacokinetics response. In contrast to studies with mammals, the results demonstrated that PZQ in HCO-SLN had equal bioavailability to pure PZQ in yellowtail kingfish, including when HCO-SLN were coated with chitosan. We hypothesise that the lack of improvement in bioavailability may be due to the lack of M cells and Peyer's patches in fish and the subsequent inability of fish to take nanoparticles directly into the lymphatic system. Furthermore, palatability of the feeds medicated with PZQ was not improved when the PZQ was incorporated into HCO-SLN, possibly due to the low loading rate of PZQ within the HCO-SLN and the subsequent thick coating of nanoparticles that was required on the surface of the feed pellets. Combined, these data demonstrate that the SLN used in the current study are not capable of delivering the benefits required to enable effective in-feed treatment of PZQ against monogenean parasites in yellowtail kingfish.


Asunto(s)
Peces/sangre , Nanopartículas/química , Praziquantel/farmacocinética , Alimentación Animal/análisis , Animales , Antihelmínticos/administración & dosificación , Antihelmínticos/farmacocinética , Área Bajo la Curva , Disponibilidad Biológica , Peces/metabolismo , Semivida , Praziquantel/administración & dosificación
5.
Plant Cell ; 20(9): 2420-36, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18805991

RESUMEN

Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2beta-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C(19)-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C(19)-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C(19)-GA 2-oxidases, we show that C(19)-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C(19)-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C(19)-GA 2-oxidation is a major GA inactivation pathway regulating development in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Transducción de Señal/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Germinación/fisiología , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Modelos Genéticos , Oxidación-Reducción , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Transducción de Señal/genética
6.
Curr Biol ; 15(17): 1560-5, 2005 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-16139211

RESUMEN

The shoot apical meristem (SAM) is a pluripotent group of cells that gives rise to the aerial parts of higher plants. Class-I KNOTTED1-like homeobox (KNOX) transcription factors promote meristem function partly through repression of biosynthesis of the growth regulator gibberellin (GA). However, regulation of GA activity cannot fully account for KNOX action. Here, we show that KNOX function is also mediated by cytokinin (CK), a growth regulator that promotes cell division and meristem function. We demonstrate that KNOX activity is sufficient to rapidly activate both CK biosynthetic gene expression and a SAM-localized CK-response regulator. We also show that CK signaling is necessary for SAM function in a weak hypomorphic allele of the KNOX gene SHOOTMERISTEMLESS (STM). Additionally, we provide evidence that a combination of constitutive GA signaling and reduced CK levels is detrimental to SAM function. Our results indicate that CK activity is both necessary and sufficient for stimulating GA catabolic gene expression, thus reinforcing the low-GA regime established by KNOX proteins in the SAM. We propose that KNOX proteins may act as general orchestrators of growth-regulator homeostasis at the shoot apex of Arabidopsis by simultaneously activating CK and repressing GA biosynthesis, thus promoting meristem activity.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Proteínas de Homeodominio/metabolismo , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal/fisiología , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/metabolismo , Citocininas/biosíntesis , Cartilla de ADN , Proteínas de Homeodominio/genética , Meristema/ultraestructura , Microscopía Electrónica de Rastreo , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA