Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750360

RESUMEN

The additive manufacturing of photopolymer resins by means of vat photopolymerization enables the rapid fabrication of bespoke 3D-printed parts. Advances in methodology have continually improved resolution and manufacturing speed, yet both the process design and resin technology have remained largely consistent since its inception in the 1980s1. Liquid resin formulations, which are composed of reactive monomers and/or oligomers containing (meth)acrylates and epoxides, rapidly photopolymerize to create crosslinked polymer networks on exposure to a light stimulus in the presence of a photoinitiator2. These resin components are mostly obtained from petroleum feedstocks, although recent progress has been made through the derivatization of renewable biomass3-6 and the introduction of hydrolytically degradable bonds7-9. However, the resulting materials are still akin to conventional crosslinked rubbers and thermosets, thus limiting the recyclability of printed parts. At present, no existing photopolymer resin can be depolymerized and directly re-used in a circular, closed-loop pathway. Here we describe a photopolymer resin platform derived entirely from renewable lipoates that can be 3D-printed into high-resolution parts, efficiently deconstructed and subsequently reprinted in a circular manner. Previous inefficiencies with methods using internal dynamic covalent bonds10-17 to recycle and reprint 3D-printed photopolymers are resolved by exchanging conventional (meth)acrylates for dynamic cyclic disulfide species in lipoates. The lipoate resin platform is highly modular, whereby the composition and network architecture can be tuned to access printed materials with varied thermal and mechanical properties that are comparable to several commercial acrylic resins.

2.
Adv Mater ; 36(8): e2308154, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38014933

RESUMEN

The design of nanosegregated fluorescent tags/barcodes by geometrical patterning with precise dimensions and hierarchies could integrate multilevel optical information within one carrier and enhance microsized barcoding techniques for ultrahigh-density optical data storage and encryption. However, precise control of the spatial distribution in micro/nanosized matrices intrinsically limits the accessible barcoding applications in terms of material design and construction. Here, crystallization forces are leveraged to enable a rapid, programmable molecular packing and rapid epitaxial growth of fluorescent units in 2D via crystallization-driven self-assembly. The fluorescence encoding density, scalability, information storage capacity, and decoding techniques of the robust 2D polymeric barcoding platform are explored systematically. These results provide both a theoretical and an experimental foundation for expanding the fluorescence storage capacity, which is a longstanding challenge in state-of-the-art microbarcoding techniques and establish a generalized and adaptable coding platform for high-throughput analysis and optical multiplexing.

3.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37373141

RESUMEN

Cardiac fibroblasts' (FBs) and cardiomyocytes' (CMs) behaviour and morphology are influenced by their environment such as remodelling of the myocardium, thus highlighting the importance of biomaterial substrates in cell culture. Biomaterials have emerged as important tools for the development of physiological models, due to the range of adaptable properties of these materials, such as degradability and biocompatibility. Biomaterial hydrogels can act as alternative substrates for cellular studies, which have been particularly key to the progression of the cardiovascular field. This review will focus on the role of hydrogels in cardiac research, specifically the use of natural and synthetic biomaterials such as hyaluronic acid, polydimethylsiloxane and polyethylene glycol for culturing induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). The ability to fine-tune mechanical properties such as stiffness and the versatility of biomaterials is assessed, alongside applications of hydrogels with iPSC-CMs. Natural hydrogels often display higher biocompatibility with iPSC-CMs but often degrade quicker, whereas synthetic hydrogels can be modified to facilitate cell attachment and decrease degradation rates. iPSC-CM structure and electrophysiology can be assessed on natural and synthetic hydrogels, often resolving issues such as immaturity of iPSC-CMs. Biomaterial hydrogels can thus provide a more physiological model of the cardiac extracellular matrix compared to traditional 2D models, with the cardiac field expansively utilising hydrogels to recapitulate disease conditions such as stiffness, encourage alignment of iPSC-CMs and facilitate further model development such as engineered heart tissues (EHTs).


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Hidrogeles/farmacología , Hidrogeles/metabolismo , Miocardio , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/metabolismo , Diferenciación Celular
4.
Acc Chem Res ; 55(17): 2355-2369, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36006902

RESUMEN

Polymer sustainability is synonymous with "bioderived polymers" and the zeitgeist of "using renewable feedstocks". However, this sentiment does not adequately encompass the requirements of sustainability in polymers. In addition to recycling considerations and mechanical performance, following green chemistry principles also needs to be maximized to improve the sustainability of polymer synthesis. The synthetic cost (i.e., maximizing atom economy, reducing chemical hazards, and lowering energy requirements) of producing polymers should be viewed as equally important to the monomer source (biomass vs petrol platform chemicals). Therefore, combining the use of renewable feedstocks with efficient syntheses and green chemistry principles is imperative to delivering truly sustainable polymers. The high efficiency, atom economy, and single reaction trajectories that define click chemistry reactions position them as ideal chemical approaches to synthesize polymers in a sustainable manner while simultaneously expanding the structural scope of accessible polymers from sustainably sourced chemicals.Click step-growth polymerization using the thiol-yne Michael addition, a reaction first reported over a century ago, has emerged as an extremely mild and atom-efficient pathway to yield high-performance polymers with controllable E/Z stereochemistry along the polymer backbone. Building on studies of aromatic thiol-yne polymers, around 10 years ago our group began investigating the thiol-yne reaction for the stereocontrolled synthesis of alkene-containing aliphatic polyesters. Our early studies established a convenient path to high-molecular-weight (>100 kDa) E-rich or Z-rich step-growth polymers by judiciously changing the catalyst and/or reaction solvent. This method has since been adapted to synthesize fast-degrading polyesters, high-performance polyamides, and resilient hydrogel biomaterials. Across several systems, we have observed dramatic differences in material properties among polymers with different alkene stereochemistry.We have also explored the analogous thiol-ene Michael reaction to create high-performance poly(ester-urethanes) with precise E/Z stereochemistry. In contrast to the stereoselective thiol-yne polymerization, here the use of monomers with predefined E/Z (geometric) isomerism (arising from either alkenes or the planar rigidity of ring units) affords polymers with total control over stereochemistry. This advancement has enabled the synthesis of tough, degradable materials that are derived from sustainable monomer feedstocks. Employing isomers of sugar-derived isohexides, bicyclic rigid-rings possessing geometric isomerism, led to degradable polymers with fundamentally opposing mechanical behavior (i.e., plastic vs elastic) simply by adjusting the stereochemistry of the isohexide.In this Account, we feature our investigation of thiol-yne/-ene click step-growth polymers and efforts to establish structure-property relationships toward degradable materials with practical mechanical performance in the context of sustainable polymers and/or biomaterials. We have paid attention to installing and controlling geometric isomerism by using these click reactions, an overarching objective of our work in this research area. The exquisite control of geometric isomerism that is possible within polymer backbones, as enabled by convenient click chemistry reactions, showcases a powerful approach to creating multipurpose degradable polymers.


Asunto(s)
Química Clic , Compuestos de Sulfhidrilo , Alquenos , Materiales Biocompatibles , Poliésteres , Polimerizacion , Polímeros/química , Compuestos de Sulfhidrilo/química
5.
J Am Chem Soc ; 144(26): 11729-11735, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35749449

RESUMEN

The development of photopolymers that can be depolymerized and subsequently re-cured using the same light stimulus presents a significant technical challenge. A bio-sourced terpenoid structure, l-carvone, inspired the creation of a re-curable photopolymer in which the orthogonal reactivity of an irreversible thioether and a dynamic thiol-Michael bond enables both photopolymerization and thermally driven depolymerization of mechanically robust polymer networks. The di-alkene containing l-carvone was partially reacted with a multi-arm thiol to generate a non-crosslinked telechelic photopolymer. Upon further UV exposure, the photopolymer crosslinked into a mechanically robust network featuring reversible Michael bonds at junction points that could be activated to revert, or depolymerize, the network into a viscous telechelic photopolymer. The regenerated photopolymer displayed intrinsic re-curability over two recycles while maintaining the desirable thermomechanical properties of a conventional network: insolubility, resistance to stress relaxation, and structural integrity up to 170 °C. Our findings present an on-demand, re-curable photopolymer platform based on a sustainable feedstock.


Asunto(s)
Polímeros , Compuestos de Sulfhidrilo , Alquenos , Polímeros/química , Compuestos de Sulfhidrilo/química , Sulfuros
7.
Angew Chem Int Ed Engl ; 61(17): e202115904, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35167725

RESUMEN

The remarkable elasticity and tensile strength found in natural elastomers are challenging to mimic. Synthetic elastomers typically feature covalently cross-linked networks (rubbers), but this hinders their reprocessability. Physical cross-linking via hydrogen bonding or ordered crystallite domains can afford reprocessable elastomers, but often at the cost of performance. Herein, we report the synthesis of ultra-tough, reprocessable elastomers based on linear alternating polymers. The incorporation of a rigid isohexide adjacent to urethane moieties affords elastomers with exceptional strain hardening, strain rate dependent behavior, and high optical clarity. Distinct differences were observed between isomannide and isosorbide-based elastomers where the latter displays superior tensile strength and strain recovery. These phenomena are attributed to the regiochemical irregularities in the polymers arising from their distinct stereochemistry and respective inter-chain hydrogen bonding.


Asunto(s)
Elastómeros , Isosorbida , Elastómeros/química , Enlace de Hidrógeno , Isosorbida/química
8.
J Am Chem Soc ; 144(3): 1243-1250, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35029980

RESUMEN

Stereochemistry in polymers can be used as an effective tool to control the mechanical and physical properties of the resulting materials. Typically, though, in synthetic polymers, differences among polymer stereoisomers leads to incremental property variation, i.e., no changes to the baseline plastic or elastic behavior. Here we show that stereochemical differences in sugar-based monomers yield a family of nonsegmented, alternating polyurethanes that can be either strong amorphous thermoplastic elastomers with properties that exceed most cross-linked rubbers or robust, semicrystalline thermoplastics with properties comparable to commercial plastics. The stereochemical differences in the monomers direct distinct intra- and interchain supramolecular hydrogen-bonding interactions in the bulk materials to define their behavior. The chemical similarity among these isohexide-based polymers enables both statistical copolymerization and blending, which each afford independent control over degradability and mechanical properties. The modular molecular design of the polymers provides an opportunity to create a family of materials with divergent properties that possess inherently built degradability and outstanding mechanical performance.

9.
Polym Chem ; 12(40): 5796-5802, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34777585

RESUMEN

The modern materials economy is inefficient since most products are principally derived from non-renewable feedstocks and largely single-use in nature. Conventional thermoset materials are often inherently unreprocessable due to their irreversible covalent crosslinks and hence are challenging to recycle and/or reprocess. Covalent adaptable networks (CAN)s, which incorporate reversible or dynamic covalent bonding, have emerged as an efficient means to afford reprocessable crosslinked materials and increasing the feedstock sustainability of CANs is a developing aim. In this study, the biomass-derived lipoic acid, which possesses a dynamic cyclic disulfide moiety, was transformed into a series of bifunctional monomers via a one-step esterification or amidation reaction and reacted with a commercially available multi-valent thiol in the presence of an organobase catalyst to afford dynamically crosslinked networks. Large differences in material properties, such as storage modulus and glass transition temperature, were observed when the ratio of the lipoic acid-based monomer to thiol (from 1 : 1 to 16 : 1) and the composition of the monomer were changed to modify the network architecture. The thermomechanical properties of an optimised formulation were investigated more thoroughly to reveal a moderately strong rubber (ultimate tensile strength = 1.8 ± 0.4 MPa) possessing a large rubbery plateau (from 0 to 150 °C) which provides an adaptable material with a wide operational temperature range. Finally, the chemical recycling, or depolymerisation, of the optimised network was also demonstrated by simply solvating the material in the presence of an organobase catalyst.

10.
Angew Chem Int Ed Engl ; 60(49): 25856-25864, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34551190

RESUMEN

The stereochemistry of polymers has a profound impact on their mechanical properties. While this has been observed in thermoplastics, studies on how stereochemistry affects the bulk properties of swollen networks, such as hydrogels, are limited. Typically, changing the stiffness of a hydrogel is achieved at the cost of changing another parameter, that in turn affects the physical properties of the material and ultimately influences the cellular response. Herein, we report that by manipulating the stereochemistry of a double bond, formed in situ during gelation, materials with diverse mechanical properties but comparable physical properties can be obtained. Click-hydrogels that possess a high % trans content are stiffer than their high % cis analogues by almost a factor of 3. Human mesenchymal stem cells acted as a substrate stiffness cell reporter demonstrating the potential of these platforms to study mechanotransduction without the influence of other external factors.

11.
Chem Rev ; 121(12): 6744-6776, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-33764739

RESUMEN

The 1,4-conjugate addition reaction between activated alkynes or acetylenic Michael acceptors and nucleophiles (i.e., the nucleophilic Michael reaction) is a historically useful organic transformation. Despite its general utility, the efficiency and outcomes can vary widely and are often closely dependent upon specific reaction conditions. Nevertheless, with improvements in reaction design, including catalyst development and an expansion of the substrate scope to feature more electrophilic alkynes, many examples now present with features that are congruent with Click chemistry. Although several nucleophilic species can participate in these conjugate additions, ubiquitous nucleophiles such as thiols, amines, and alcohols are commonly employed and, consequently, among the most well developed. For many years, these conjugate additions were largely relegated to organic chemistry, but in the last few decades their use has expanded into other spheres such as bioorganic chemistry and polymer chemistry. Within these fields, they have been particularly useful for bioconjugation reactions and step-growth polymerizations, respectively, due to their excellent efficiency, orthogonality, and ambient reactivity. The reaction is expected to feature in increasingly divergent application settings as it continues to emerge as a Click reaction.


Asunto(s)
Alcoholes/química , Alquinos/química , Aminas/química , Biopolímeros/química , Compuestos de Sulfhidrilo/química , Química Clic , Hidrogeles/síntesis química , Hidrogeles/química
12.
Nat Commun ; 12(1): 446, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469013

RESUMEN

Complex biological tissues are highly viscoelastic and dynamic. Efforts to repair or replace cartilage, tendon, muscle, and vasculature using materials that facilitate repair and regeneration have been ongoing for decades. However, materials that possess the mechanical, chemical, and resorption characteristics necessary to recapitulate these tissues have been difficult to mimic using synthetic resorbable biomaterials. Herein, we report a series of resorbable elastomer-like materials that are compositionally identical and possess varying ratios of cis:trans double bonds in the backbone. These features afford concomitant control over the mechanical and surface eroding degradation properties of these materials. We show the materials can be functionalized post-polymerization with bioactive species and enhance cell adhesion. Furthermore, an in vivo rat model demonstrates that degradation and resorption are dependent on succinate stoichiometry in the elastomers and the results show limited inflammation highlighting their potential for use in soft tissue regeneration and drug delivery.


Asunto(s)
Implantes Absorbibles , Materiales Biocompatibles/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Células 3T3 , Animales , Línea Celular , Elastómeros , Femenino , Humanos , Ensayo de Materiales , Células Madre Mesenquimatosas , Ratones , Polimerizacion , Ratas , Estereoisomerismo , Propiedades de Superficie , Resistencia a la Tracción
13.
Angew Chem Weinheim Bergstr Ger ; 133(49): 26060-26068, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38505187

RESUMEN

The stereochemistry of polymers has a profound impact on their mechanical properties. While this has been observed in thermoplastics, studies on how stereochemistry affects the bulk properties of swollen networks, such as hydrogels, are limited. Typically, changing the stiffness of a hydrogel is achieved at the cost of changing another parameter, that in turn affects the physical properties of the material and ultimately influences the cellular response. Herein, we report that by manipulating the stereochemistry of a double bond, formed in situ during gelation, materials with diverse mechanical properties but comparable physical properties can be obtained. Click-hydrogels that possess a high % trans content are stiffer than their high % cis analogues by almost a factor of 3. Human mesenchymal stem cells acted as a substrate stiffness cell reporter demonstrating the potential of these platforms to study mechanotransduction without the influence of other external factors.

14.
Nat Commun ; 11(1): 3250, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591525

RESUMEN

Biocompatible polymers are widely used in tissue engineering and biomedical device applications. However, few biomaterials are suitable for use as long-term implants and these examples usually possess limited property scope, can be difficult to process, and are non-responsive to external stimuli. Here, we report a class of easily processable polyamides with stereocontrolled mechanical properties and high-fidelity shape memory behaviour. We synthesise these materials using the efficient nucleophilic thiol-yne reaction between a dipropiolamide and dithiol to yield an α,ß - unsaturated carbonyl moiety along the polymer backbone. By rationally exploiting reaction conditions, the alkene stereochemistry is modulated between 35-82% cis content and the stereochemistry dictates the bulk material properties such as tensile strength, modulus, and glass transition. Further access to materials possessing a broader range of thermal and mechanical properties is accomplished by polymerising a variety of commercially available dithiols with the dipropiolamide monomer.


Asunto(s)
Elastómeros/química , Fenómenos Mecánicos , Nylons/química , Materiales Inteligentes/química , Animales , Materiales Biocompatibles/farmacología , Rastreo Diferencial de Calorimetría , Línea Celular , Masculino , Ensayo de Materiales , Ratones , Nylons/síntesis química , Polimerizacion , Ratas Sprague-Dawley , Estrés Mecánico , Compuestos de Sulfhidrilo/química , Temperatura
15.
ACS Macro Lett ; 9(11): 1494-1506, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35617072

RESUMEN

The current global materials economy has long been inefficient due to unproductive reuse and recycling efforts. Within the wider materials portfolio, plastics have been revolutionary to many industries but they have been treated as disposable commodities leading to their increasing accumulation in the environment as waste. The field of chemistry has had significant bearing in ushering in the current plastics industry and will undoubtedly have a hand in transforming it to become more sustainable. Existing approaches include the development of synthetic biodegradable plastics and turning to renewable raw materials in order to produce plastics similar to our current petrol-based materials or to create new polymers. Additionally, chemists are confronting the environmental crisis by developing alternative recycling methods to deal with the legacy of plastic waste. Important emergent technologies, such as catalytic chemical recycling or upcycling, have the potential to alleviate numerous issues related to our current and future refuse and, in doing so, help pivot our materials economy from linearity to circularity.

16.
ChemSusChem ; 13(3): 469-487, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31769174

RESUMEN

The utilization of carbon dioxide as a comonomer to produce polycarbonates has attracted a great deal of attention from both industrial and academic communities because it promises to replace petroleum-derived plastics and supports a sustainable environment. Significant progress in the copolymerization of cyclic ethers (e.g., epoxide, oxetane) and carbon dioxide has been made in recent decades, owing to the rapid development of catalysts. In this Review, the focus is to summarize and discuss recent advances in the development of homogeneous catalysts, including metal- and organo-based complexes, as well as the preparation of carbon dioxide-based block copolymer and functional polycarbonates.

17.
J Am Chem Soc ; 141(22): 8858-8867, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31038941

RESUMEN

This report describes the design and synthesis of a new class of polyfurans bearing ester side chains. The macromolecules can be synthesized using catalyst-transfer polycondensation, providing precise control over molecular weight and molecular weight distribution. Such obtained furan ester polymers are significantly more photostable than their alkyl analogues owing to the electron-withdrawing nature of the attached subunit. Most interestingly, they spontaneously fold into a compact π-stacked helix, yielding a complex multilayer cylindrical nanoparticle with a hollow, rigid, conjugated core composed of the polyfuran backbone and a soft, insulating outer layer formed by the ester side chains. The length of polymer side chains dictates the outer diameter of such nanoparticles, which for the hexyl ester groups used in the present study is equal to ∼2.3 nm. The inner cavity of the conjugated core is lined with oxygen atoms, which set its effective diameter to 0.4 nm. Furthermore, installation of bulkier, branched chiral ester side chains on the repeat unit yields structures that, upon change of solvent, can reversibly transition between an ordered chiral helical folded and disordered unfolded state.

18.
Chemistry ; 20(25): 7746-51, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24817444

RESUMEN

1,4-Dimercapto-2,5-diphosphinobenzene and 3,6-bis(hexyloxy)-1,4-dimercapto-2,5-diphosphinobenzene were synthesized and combined with various acid chlorides to obtain a series of benzobisthiaphospholes. Electrochemical and photophysical properties of the substituted benzobisthiaphospholes have been evaluated, and the observed reductions are more facile than the related benzothiaphospholes and 2,6-diphenylbenzobisthiazole. A benzobisthiaphosphole with C6H4-p-CN substituents was reduced at E(1/2)=-1.08 V (vs. saturated calomel electrode (SCE)). X-ray diffraction data for several of these phosphorus heterocycles has been obtained, and DFT calculations at the B3LYP level have been performed.

19.
J Org Chem ; 78(15): 7462-9, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23782064

RESUMEN

A series of 2-aryl-1,3-benzothiaphospholes have been synthesized from 1-mercapto-2-phosphinobenzene and a variety of acid chlorides. The structure of 2-phenyl-1,3-benzothiaphosphole was established using X-ray diffraction. The electrochemical and photophysical properties of each benzothiaphosphole are reported and some of these molecules exhibit reversible 1-electron reductions.


Asunto(s)
Compuestos Organofosforados/síntesis química , Electrones , Modelos Moleculares , Estructura Molecular , Compuestos Organofosforados/química , Procesos Fotoquímicos , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...