Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113849, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38427560

RESUMEN

CRISPR-Cas immune systems provide bacteria with adaptive immunity against bacteriophages, but they are often transcriptionally repressed to mitigate auto-immunity. In some cases, CRISPR-Cas expression increases in response to a phage infection, but the mechanisms of induction are largely unknown, and it is unclear whether induction occurs strongly and quickly enough to benefit the bacterial host. In S. pyogenes, Cas9 is both an immune effector and auto-repressor of CRISPR-Cas expression. Here, we show that phage-encoded anti-CRISPR proteins relieve Cas9 auto-repression and trigger a rapid increase in CRISPR-Cas levels during a single phage infective cycle. As a result, fewer cells succumb to lysis, leading to a striking survival benefit after multiple rounds of infection. CRISPR-Cas induction also reduces lysogeny, thereby limiting a route for horizontal gene transfer. Altogether, we show that Cas9 is not only a CRISPR-Cas effector and repressor but also a phage sensor that can mount an anti-anti-CRISPR transcriptional response.


Asunto(s)
Bacteriófagos , Bacteriófagos/fisiología , Sistemas CRISPR-Cas/genética , Bacterias/metabolismo , Lisogenia , Proteínas Virales/genética , Proteínas Virales/metabolismo
2.
Genome Res ; 33(5): 703-714, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37156619

RESUMEN

Hummingbirds are very well adapted to sustain efficient and rapid metabolic shifts. They oxidize ingested nectar to directly fuel flight when foraging but have to switch to oxidizing stored lipids derived from ingested sugars during the night or long-distance migratory flights. Understanding how this organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. To explore these questions, we generated a chromosome-scale genome assembly of the ruby-throated hummingbird (A. colubris) using a combination of long- and short-read sequencing, scaffolding it using existing assemblies. We then used hybrid long- and short-read RNA sequencing of liver and muscle tissue in fasted and fed metabolic states for a comprehensive transcriptome assembly and annotation. Our genomic and transcriptomic data found positive selection of key metabolic genes in nectivorous avian species and deletion of critical genes (SLC2A4, GCK) involved in glucostasis in other vertebrates. We found expression of a fructose-specific version of SLC2A5 putatively in place of insulin-sensitive SLC2A5, with predicted protein models suggesting affinity for both fructose and glucose. Alternative isoforms may even act to sequester fructose to preclude limitations from transport in metabolism. Finally, we identified differentially expressed genes from fasted and fed hummingbirds, suggesting key pathways for the rapid metabolic switch hummingbirds undergo.


Asunto(s)
Aves , Metabolismo Energético , Animales , Aves/genética , Músculos/metabolismo , Genómica , Fructosa/metabolismo
3.
G3 (Bethesda) ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35100403

RESUMEN

Sequencing, assembly, and annotation of the 26.5 Gbp hexaploid genome of coast redwood (Sequoia sempervirens) was completed leading toward discovery of genes related to climate adaptation and investigation of the origin of the hexaploid genome. Deep-coverage short-read Illumina sequencing data from haploid tissue from a single seed were combined with long-read Oxford Nanopore Technologies sequencing data from diploid needle tissue to create an initial assembly, which was then scaffolded using proximity ligation data to produce a highly contiguous final assembly, SESE 2.1, with a scaffold N50 size of 44.9 Mbp. The assembly included several scaffolds that span entire chromosome arms, confirmed by the presence of telomere and centromere sequences on the ends of the scaffolds. The structural annotation produced 118,906 genes with 113 containing introns that exceed 500 Kbp in length and one reaching 2 Mb. Nearly 19 Gbp of the genome represented repetitive content with the vast majority characterized as long terminal repeats, with a 2.9:1 ratio of Copia to Gypsy elements that may aid in gene expression control. Comparison of coast redwood to other conifers revealed species-specific expansions for a plethora of abiotic and biotic stress response genes, including those involved in fungal disease resistance, detoxification, and physical injury/structural remodeling and others supporting flavonoid biosynthesis. Analysis of multiple genes that exist in triplicate in coast redwood but only once in its diploid relative, giant sequoia, supports a previous hypothesis that the hexaploidy is the result of autopolyploidy rather than any hybridizations with separate but closely related conifer species.


Asunto(s)
Sequoia , Evolución Biológica , Cromosomas , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Sequoia/genética
4.
Cell ; 184(3): 675-688.e19, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33421369

RESUMEN

CRISPR-Cas systems provide prokaryotes with acquired immunity against viruses and plasmids, but how these systems are regulated to prevent autoimmunity is poorly understood. Here, we show that in the S. pyogenes CRISPR-Cas system, a long-form transactivating CRISPR RNA (tracr-L) folds into a natural single guide that directs Cas9 to transcriptionally repress its own promoter (Pcas). Further, we demonstrate that Pcas serves as a critical regulatory node. De-repression causes a dramatic 3,000-fold increase in immunization rates against viruses; however, heightened immunity comes at the cost of increased autoimmune toxicity. Using bioinformatic analyses, we provide evidence that tracrRNA-mediated autoregulation is widespread in type II-A CRISPR-Cas systems. Collectively, we unveil a new paradigm for the intrinsic regulation of CRISPR-Cas systems by natural single guides, which may facilitate the frequent horizontal transfer of these systems into new hosts that have not yet evolved their own regulatory strategies.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Expresión Génica , Homeostasis/genética , ARN Guía de Kinetoplastida/genética , Autoinmunidad/genética , Secuencia de Bases , Secuencia Conservada , Regulación hacia Abajo/genética , Modelos Genéticos , Mutación/genética , Operón/genética , Regiones Promotoras Genéticas/genética , Streptococcus pyogenes/genética , Estrés Fisiológico/genética , Transcripción Genética , Activación Transcripcional/genética
5.
Eur J Clin Microbiol Infect Dis ; 40(1): 95-102, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32783106

RESUMEN

Antimicrobial resistance (AMR) is a public health threat where efficient surveillance is needed to prevent outbreaks. Existing methods for detection of gastrointestinal colonization of multidrug-resistant organisms (MDRO) are limited to specific organisms or resistance mechanisms. Metagenomic next-generation sequencing (mNGS) is a more rapid and agnostic diagnostic approach for microbiome and resistome investigations. We determined if mNGS can detect MDRO from rectal swabs in concordance with standard microbiology results. We performed and compared mNGS performance on short-read Illumina MiSeq (N = 10) and long-read Nanopore MinION (N = 5) platforms directly from rectal swabs to detect vancomycin-resistant enterococci (VRE) and carbapenem-resistant Gram-negative organisms (CRO). We detected Enterococcus faecium (N = 8) and Enterococcus faecalis (N = 2) with associated van genes (9/10) in concordance with VRE culture-based results. We studied the microbiome and identified CRO, Pseudomonas aeruginosa (N = 1), Enterobacter cloacae (N = 1), and KPC-producing Klebsiella pneumoniae (N = 1). Nanopore real-time analysis detected the blaKPC gene in 2.3 min and provided genetic context (blaKPC harbored on pKPC_Kp46 IncF plasmid). Illumina sequencing provided accurate allelic variant determination (i.e., blaKPC-2) and strain typing of the K. pneumoniae (ST-15). We demonstrated an agnostic approach for surveillance of MDRO, examining advantages of both short- and long-read mNGS methods for AMR detection.


Asunto(s)
Carbapenémicos , Farmacorresistencia Bacteriana , Bacterias Gramnegativas/genética , Infecciones por Bacterias Gramnegativas/diagnóstico , Enterococos Resistentes a la Vancomicina/genética , Genoma Bacteriano , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Metagenómica , Recto/microbiología
6.
G3 (Bethesda) ; 10(11): 3907-3919, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32948606

RESUMEN

The giant sequoia (Sequoiadendron giganteum) of California are massive, long-lived trees that grow along the U.S. Sierra Nevada mountains. Genomic data are limited in giant sequoia and producing a reference genome sequence has been an important goal to allow marker development for restoration and management. Using deep-coverage Illumina and Oxford Nanopore sequencing, combined with Dovetail chromosome conformation capture libraries, the genome was assembled into eleven chromosome-scale scaffolds containing 8.125 Gbp of sequence. Iso-Seq transcripts, assembled from three distinct tissues, was used as evidence to annotate a total of 41,632 protein-coding genes. The genome was found to contain, distributed unevenly across all 11 chromosomes and in 63 orthogroups, over 900 complete or partial predicted NLR genes, of which 375 are supported by annotation derived from protein evidence and gene modeling. This giant sequoia reference genome sequence represents the first genome sequenced in the Cupressaceae family, and lays a foundation for using genomic tools to aid in giant sequoia conservation and management.


Asunto(s)
Sequoiadendron , Cromosomas , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Árboles
7.
Gigascience ; 9(5)2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32432329

RESUMEN

BACKGROUND: The release of the first reference genome of walnut (Juglans regia L.) enabled many achievements in the characterization of walnut genetic and functional variation. However, it is highly fragmented, preventing the integration of genetic, transcriptomic, and proteomic information to fully elucidate walnut biological processes. FINDINGS: Here, we report the new chromosome-scale assembly of the walnut reference genome (Chandler v2.0) obtained by combining Oxford Nanopore long-read sequencing with chromosome conformation capture (Hi-C) technology. Relative to the previous reference genome, the new assembly features an 84.4-fold increase in N50 size, with the 16 chromosomal pseudomolecules assembled and representing 95% of its total length. Using full-length transcripts from single-molecule real-time sequencing, we predicted 37,554 gene models, with a mean gene length higher than the previous gene annotations. Most of the new protein-coding genes (90%) present both start and stop codons, which represents a significant improvement compared with Chandler v1.0 (only 48%). We then tested the potential impact of the new chromosome-level genome on different areas of walnut research. By studying the proteome changes occurring during male flower development, we observed that the virtual proteome obtained from Chandler v2.0 presents fewer artifacts than the previous reference genome, enabling the identification of a new potential pollen allergen in walnut. Also, the new chromosome-scale genome facilitates in-depth studies of intraspecies genetic diversity by revealing previously undetected autozygous regions in Chandler, likely resulting from inbreeding, and 195 genomic regions highly differentiated between Western and Eastern walnut cultivars. CONCLUSION: Overall, Chandler v2.0 will serve as a valuable resource to better understand and explore walnut biology.


Asunto(s)
Cromosomas de las Plantas , Biología Computacional/métodos , Genoma de Planta , Genómica/métodos , Juglans/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Juglans/metabolismo , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Proteómica/métodos , Especificidad de la Especie
9.
Nat Methods ; 16(12): 1297-1305, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31740818

RESUMEN

High-throughput complementary DNA sequencing technologies have advanced our understanding of transcriptome complexity and regulation. However, these methods lose information contained in biological RNA because the copied reads are often short and modifications are not retained. We address these limitations using a native poly(A) RNA sequencing strategy developed by Oxford Nanopore Technologies. Our study generated 9.9 million aligned sequence reads for the human cell line GM12878, using thirty MinION flow cells at six institutions. These native RNA reads had a median length of 771 bases, and a maximum aligned length of over 21,000 bases. Mitochondrial poly(A) reads provided an internal measure of read-length quality. We combined these long nanopore reads with higher accuracy short-reads and annotated GM12878 promoter regions to identify 33,984 plausible RNA isoforms. We describe strategies for assessing 3' poly(A) tail length, base modifications and transcript haplotypes.


Asunto(s)
Secuenciación de Nanoporos/métodos , Poli A/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma , Células Cultivadas , Humanos
10.
Genes Chromosomes Cancer ; 58(8): 530-540, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30664813

RESUMEN

Telomerase reverse transcriptase (TERT) activation plays an important role in cancer development by enabling the immortalization of cells. TERT regulation is multifaceted, and its promoter methylation has been implicated in controlling expression through alteration in transcription factor binding. We have characterized TERT promoter methylation, transcription factor binding, and TERT expression levels in five differentiated thyroid cancer (DTC) cell lines and six normal thyroid tissue samples by targeted bisulfite sequencing, ChIP-qPCR, and qRT-PCR. DTC cell lines express varying levels of TERT and exhibit TERT promoter methylation patterns similar to patterns seen in other telomerase positive cancer cell lines. The minimal promoter immediately surrounding the transcription start site is hypomethylated, while further upstream portions show dense methylation. In contrast, the TERT promoter in normal thyroid tissue is largely unmethylated throughout and expresses TERT minimally. Transcription factor binding is also affected by TERT mutation status. The E-twenty-six (ETS) factor GABPA exhibits TERT binding in the TERT mutant DTC cells only, and allele-specific methylation patterns at the minimal promoter were observed as well, which may indicate allele-specific factor recruitment at the minimal promoter. Furthermore, we identified binding sites for activators MYC and GSC in the hypermethylated upstream region, pointing to its possible importance in TERT regulation. Overall, TERT expression and telomerase activity depend on the interplay of multiple regulatory mechanisms including TERT promoter methylation, mutation status, and recruitment of transcription factors. This work explores of the interplay between these regulatory mechanisms and offers insight into cellular control of active telomerase in human cancer.


Asunto(s)
Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Regiones Promotoras Genéticas , Telomerasa/genética , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Factores de Transcripción/metabolismo , Alelos , Sitios de Unión , Línea Celular Tumoral , Islas de CpG , Humanos , Mutación , Motivos de Nucleótidos , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Neoplasias de la Tiroides/patología , Sitio de Iniciación de la Transcripción
11.
PLoS One ; 13(12): e0209408, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30562388

RESUMEN

Mammalian gene expression is a complex process regulated in part by CpG methylation. The ability to target methylation for de novo gene regulation could have therapeutic and research applications. We have previously developed a dCas9-MC/MN protein for targeting CpG methylation. dCas9-MC/MN is composed of an artificially split M.SssI methyltransferase (MC/MN), with the MC fragment fused to a nuclease-null CRISPR/Cas9 (dCas9). Guide RNAs directed dCas9-MC/MN to methylate target sites in E. coli and human cells but also caused some low-level off-target methylation. Here, in E. coli, we show that shortening the dCas9-MC linker increases methylation of CpG sites located at select distances from the dCas9 binding site. Although a shortened linker decreased methylation of other CpGs proximal to the target site, it did not reduce off-target methylation of more distant CpG sites. Instead, targeted mutagenesis of the methyltransferase's DNA binding domain, designed to reduce DNA affinity, significantly and preferentially reduced methylation of such sites.


Asunto(s)
Sistemas CRISPR-Cas/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Edición Génica/métodos , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión/genética , Sitios de Unión/genética , Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Escherichia coli , Mutagénesis/genética , Dominios y Motivos de Interacción de Proteínas/genética , ARN Guía de Kinetoplastida/genética , Proteínas Recombinantes de Fusión/metabolismo
12.
Gigascience ; 7(3): 1-12, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29618047

RESUMEN

Background: Hummingbirds oxidize ingested nectar sugars directly to fuel foraging but cannot sustain this fuel use during fasting periods, such as during the night or during long-distance migratory flights. Instead, fasting hummingbirds switch to oxidizing stored lipids that are derived from ingested sugars. The hummingbird liver plays a key role in moderating energy homeostasis and this remarkable capacity for fuel switching. Additionally, liver is the principle location of de novo lipogenesis, which can occur at exceptionally high rates, such as during premigratory fattening. Yet understanding how this tissue and whole organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. Findings: We generated a de novo transcriptome of the hummingbird liver using PacBio full-length cDNA sequencing (Iso-Seq), yielding 8.6Gb of sequencing data, or 2.6M reads from 4 different size fractions. We analyzed data using the SMRTAnalysis v3.1 Iso-Seq pipeline, then clustered isoforms into gene families to generate de novo gene contigs using Cogent. We performed orthology analysis to identify closely related sequences between our transcriptome and other avian and human gene sets. Finally, we closely examined homology of critical lipid metabolism genes between our transcriptome data and avian and human genomes. Conclusions: We confirmed high levels of sequence divergence within hummingbird lipogenic enzymes, suggesting a high probability of adaptive divergent function in the hepatic lipogenic pathways. Our results leverage cutting-edge technology and a novel bioinformatics pipeline to provide a first direct look at the transcriptome of this incredible organism.


Asunto(s)
Aves/genética , Metabolismo Energético/genética , Hígado/metabolismo , Transcriptoma/genética , Animales , Aves/metabolismo , Biología Computacional , Perfilación de la Expresión Génica , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , Imagen Individual de Molécula
13.
G3 (Bethesda) ; 7(11): 3831-3836, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28963165

RESUMEN

Here we describe the sequencing and assembly of the pathogenic fungus Lomentospora prolificans using a combination of short, highly accurate Illumina reads and additional coverage in very long Oxford Nanopore reads. The resulting assembly is highly contiguous, containing a total of 37,627,092 bp with over 98% of the sequence in just 26 scaffolds. Annotation identified 8896 protein-coding genes. Pulsed-field gel analysis suggests that this organism contains at least 7 and possibly 11 chromosomes, the two longest of which have sizes corresponding closely to the sizes of the longest scaffolds, at 6.6 and 5.7 Mb.


Asunto(s)
Genoma Fúngico , Anotación de Secuencia Molecular , Scedosporium/genética , Proteínas Fúngicas/genética , Secuenciación Completa del Genoma
14.
Nucleic Acids Res ; 45(14): e128, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28854731

RESUMEN

Clinical tissues are prepared for histological analysis and long-term storage via formalin fixation and paraffin embedding (FFPE). The FFPE process results in fragmentation and chemical modification of RNA, rendering it less suitable for analysis by techniques that rely on reverse transcription (RT) such as RT-qPCR and RNA-Seq. Here we describe a broadly applicable technique called 'Ligation in situ Hybridization' ('LISH'), which is an alternative methodology for the analysis of FFPE RNA. LISH utilizes the T4 RNA Ligase 2 to efficiently join adjacent chimeric RNA-DNA probe pairs hybridized in situ on fixed RNA target sequences. Subsequent treatment with RNase H releases RNA-templated ligation products into solution for downstream analysis. We demonstrate several unique advantages of LISH-based assays using patient-derived FFPE tissue. These include >100-plex capability, compatibility with common histochemical stains and suitability for analysis of decade-old materials and exceedingly small microdissected tissue fragments. High-throughput DNA sequencing modalities, including single molecule sequencing, can be used to analyze ligation products from complex panels of LISH probes ('LISH-seq'), which can be amplified efficiently and with negligible bias. LISH analysis of FFPE RNA is a novel methodology with broad applications that range from multiplexed gene expression analysis to the sensitive detection of infectious organisms.


Asunto(s)
Hibridación in Situ/métodos , Adhesión en Parafina/métodos , ARN/genética , Fijación del Tejido/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Microscopía Fluorescente , ARN/análisis , ARN/metabolismo , ARN Ligasa (ATP)/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Ribonucleasa H/metabolismo , Proteínas Virales/metabolismo
15.
Sci Rep ; 7(1): 6732, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28751638

RESUMEN

Mammalian genomes exhibit complex patterns of gene expression regulated, in part, by DNA methylation. The advent of engineered DNA methyltransferases (MTases) to target DNA methylation to specific sites in the genome will accelerate many areas of biological research. However, targeted MTases require clear design rules to direct site-specific DNA methylation and minimize the unintended effects of off-target DNA methylation. Here we report a targeted MTase composed of an artificially split CpG MTase (sMTase) with one fragment fused to a catalytically-inactive Cas9 (dCas9) that directs the functional assembly of sMTase fragments at the targeted CpG site. We precisely map RNA-programmed DNA methylation to targeted CpG sites as a function of distance and orientation from the protospacer adjacent motif (PAM). Expression of the dCas9-sMTase in mammalian cells led to predictable and efficient (up to ~70%) DNA methylation at targeted sites. Multiplexing sgRNAs enabled targeting methylation to multiple sites in a single promoter and to multiple sites in multiple promoters. This programmable de novo MTase tool might be used for studying mechanisms of initiation, spreading and inheritance of DNA methylation, and for therapeutic gene silencing.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , Edición Génica/métodos , Ingeniería de Proteínas/métodos , ARN Guía de Kinetoplastida/genética , Secuencia de Bases , Sitios de Unión , Proteína 9 Asociada a CRISPR/metabolismo , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Guía de Kinetoplastida/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato
16.
Nat Methods ; 14(4): 407-410, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28218898

RESUMEN

In nanopore sequencing devices, electrolytic current signals are sensitive to base modifications, such as 5-methylcytosine (5-mC). Here we quantified the strength of this effect for the Oxford Nanopore Technologies MinION sequencer. By using synthetically methylated DNA, we were able to train a hidden Markov model to distinguish 5-mC from unmethylated cytosine. We applied our method to sequence the methylome of human DNA, without requiring special steps for library preparation.


Asunto(s)
5-Metilcitosina/análisis , Citosina/metabolismo , Metilación de ADN , Genoma Humano , Línea Celular Tumoral , Islas de CpG , Citosina/análisis , Escherichia coli/genética , Humanos , Cadenas de Markov , Nanoporos
17.
Am J Bot ; 103(6): 1041-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27283022

RESUMEN

PREMISE OF THE STUDY: Mycorrhizal hyphal complexes can connect multiple host plants to form common mycelial networks (CMNs) that may affect plant competitive outcomes and community composition through differential resource allocation. The impacts of CMN interactions on invasive plants are not well understood and could be crucial to the understanding of invasive plant establishment and success. METHODS: We grew the invasive grass Brachypodium sylvaticum in intra- and interspecific pairings with native grass Bromus vulgaris in a greenhouse and controlled for the effects of CMN and root interactions by manipulating the belowground separation between competitors. Comparison of plant growth in pots that allowed CMN interactions and excluded root competition and vice versa, or both, allowed us to delineate the effects of network formation and root competition on invasive plant establishment and performance. KEY RESULTS: Brachypodium sylvaticum grown in pots allowing for only hyphal interactions, but no root competition, displayed superior growth compared with conspecifics in other treatments. Invasive performance was poorest when pairs were not separated by a barrier. Shoot nitrogen content in B. sylvaticum was higher in mycorrhizal plants only when connections were allowed between competitors. CONCLUSIONS: Our results indicate that the presence of CMN networks can have positive effects on B. sylvaticum establishment and nutrient status, which may affect plant competition and invasion success.


Asunto(s)
Especies Introducidas , Micelio/fisiología , Poaceae/microbiología , Micorrizas/fisiología , Nitrógeno/análisis , Fósforo/análisis , Desarrollo de la Planta , Brotes de la Planta/fisiología
18.
Cancer Biol Ther ; 17(3): 246-53, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26787508

RESUMEN

Despite advances in sequencing, structural variants (SVs) remain difficult to reliably detect due to the short read length (<300 bp) of 2nd generation sequencing. Not only do the reads (or paired-end reads) need to straddle a breakpoint, but repetitive elements often lead to ambiguities in the alignment of short reads. We propose to use the long-reads (up to 20 kb) possible with 3rd generation sequencing, specifically nanopore sequencing on the MinION. Nanopore sequencing relies on a similar concept to a Coulter counter, reading the DNA sequence from the change in electrical current resulting from a DNA strand being forced through a nanometer-sized pore embedded in a membrane. Though nanopore sequencing currently has a relatively high mismatch rate that precludes base substitution and small frameshift mutation detection, its accuracy is sufficient for SV detection because of its long reads. In fact, long reads in some cases may improve SV detection efficiency. We have tested nanopore sequencing to detect a series of well-characterized SVs, including large deletions, inversions, and translocations that inactivate the CDKN2A/p16 and SMAD4/DPC4 tumor suppressor genes in pancreatic cancer. Using PCR amplicon mixes, we have demonstrated that nanopore sequencing can detect large deletions, translocations and inversions at dilutions as low as 1:100, with as few as 500 reads per sample. Given the speed, small footprint, and low capital cost, nanopore sequencing could become the ideal tool for the low-level detection of cancer-associated SVs needed for molecular relapse, early detection, or therapeutic monitoring.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Nanoporos , Neoplasias Pancreáticas/genética , Análisis de Secuencia de ADN/métodos , Roturas del ADN , Genes Supresores de Tumor , Genes p16 , Humanos , Proteína Smad4/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...