Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 14(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35456529

RESUMEN

The ability to predict formulation behaviour at production scale during formulation design can reduce the time to market and decrease product development costs. However, it is challenging to extrapolate compaction settings for direct compression formulations between tablet press models during scale-up and transfer from R&D to commercial production. The aim of this study was to develop statistical process models to predict tablet tensile strength, porosity and disintegration time from compaction parameters (pre-compression and main compression force, and press speed), for three formulations, with differing deformation characteristics (plastic, brittle and elastic), on three tablet press models (one pilot-scale tablet press (KG RoTab) and two production-scale presses (Fette 1200i and GEA Modul P)). The deformation characteristics of yield pressure and elastic recovery were determined for the model placebo formulations investigated. To facilitate comparison of dwell time settings between tablet press models, the design of experiments (DoE) approach was 9 individual 16-run response surface DoEs (3 formulation × 3 press models), whose results were combined to create a polynomial regression model for each tablet property. These models predicted tablet tensile strength, porosity and disintegration time and enabled the construction of design spaces to produce tablets with specified target properties, for each formulation on each press. The models were successfully validated. This modelling approach provides an understanding of the compaction behaviour of formulations with varying deformation behaviour on development and commercial tablet press models. This understanding can be applied to inform achievable production rates at a commercial scale, during the formulation development.

2.
Pharmaceutics ; 13(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34371725

RESUMEN

Optimizing processing conditions to achieve a critical quality attribute (CQA) is an integral part of pharmaceutical quality by design (QbD). It identifies combinations of material and processing parameters ensuring that processing conditions achieve a targeted CQA. Optimum processing conditions are formulation and equipment-dependent. Therefore, it is challenging to translate a process design between formulations, pilot-scale and production-scale equipment. In this study, an empirical model was developed to determine optimum processing conditions for direct compression formulations with varying flow properties, across pilot- and production-scale tablet presses. The CQA of interest was tablet weight variability, expressed as percentage relative standard deviation. An experimental design was executed for three model placebo blends with varying flow properties. These blends were compacted on one pilot-scale and two production-scale presses. The process model developed enabled the optimization of processing parameters for each formulation, on each press, with respect to a target tablet weight variability of <1%RSD. The model developed was successfully validated using data for additional placebo and active formulations. Validation formulations were benchmarked to formulations used for model development, employing permeability index values to indicate blend flow.

3.
Pharmaceutics ; 12(5)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397201

RESUMEN

When developing an amorphous solid dispersion (ASD), a prudent choice of polymer is critical to several aspects of ASD performance including: processability, solid state stability and dissolution rate. However, there is little guidance available to formulators to aid judicious polymer selection and a "trial and error" approach is often taken. This study aims to facilitate rational polymer selection and formulation design by generating ASDs using a range of poly-vinyl polymers and ketoprofen as a model active pharmaceutical ingredient (API) and evaluating several aspects of their performance. The molecular weight of the polymer and the ratio of vinyl pyrrolidone to vinyl acetate in the polymer were found to influence the relative humidity at which the relative humidity induced glass transition occurred, as well as the extent of ketoprofen supersaturation achieved during dynamic solubility testing. Interestingly, ASD tablets containing polymers with the vinyl pyrrolidone functional group exhibited higher tensile strengths than those without. This points towards the binder functionality of vinyl pyrrolidone. In conclusion, the physicochemical properties of poly-vinyl polymers greatly influence ketoprofen ASD performance and due regard should be paid to these properties in order to develop an ASD with the desired attributes.

4.
Int J Pharm ; 565: 209-218, 2019 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-31075438

RESUMEN

Roller compaction is a low cost granulation process which application is sometimes limited by the granular loss of compactability and reduced drug dissolution rate. Hence, the design of a robust manufacturing process is key in order to ensure quality of tablets. In this study, for ibuprofen tablets with high drug loading (<7% excipients), the correlations between two critical process parameters (CPPs), namely roller force during granulation and compaction pressure during tabletting, and several critical quality attributes (CQAs) were investigated using a design of experiment (DoE) approach. Multivariate analysis (MVA) was utilized to identify the best regression model to predict CQAs such as disintegration, dissolution, weight uniformity, hardness, porosity and tensile strength for 200 and 600 mg ibuprofen tablets. The tabletting compaction pressure had a greater impact on the aforementioned CQAs than compactor roller force. The Principal Component Analysis (PCA) correlation loading plot showed that compaction pressure was directly related to disintegration time, tensile strength and hardness, and inversely related to both the percentage of drug dissolved and porosity. The inverse correlations were observed for the roller force applied during dry granulation. Amongst all the regression models constructed, multiple linear regression (MLR) showed the best correlation between CPPs and CQAs.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Ibuprofeno/química , Tecnología Farmacéutica/métodos , Liberación de Fármacos , Excipientes/química , Dureza , Modelos Lineales , Porosidad , Análisis de Componente Principal , Comprimidos , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA