Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 18(3): 717-746, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30810561

RESUMEN

This assessment summarises the current state of knowledge on the interactive effects of ozone depletion and climate change on aquatic ecosystems, focusing on how these affect exposures to UV radiation in both inland and oceanic waters. The ways in which stratospheric ozone depletion is directly altering climate in the southern hemisphere and the consequent extensive effects on aquatic ecosystems are also addressed. The primary objective is to synthesise novel findings over the past four years in the context of the existing understanding of ecosystem response to UV radiation and the interactive effects of climate change. If it were not for the Montreal Protocol, stratospheric ozone depletion would have led to high levels of exposure to solar UV radiation with much stronger negative effects on all trophic levels in aquatic ecosystems than currently experienced in both inland and oceanic waters. This "world avoided" scenario that has curtailed ozone depletion, means that climate change and other environmental variables will play the primary role in regulating the exposure of aquatic organisms to solar UV radiation. Reductions in the thickness and duration of snow and ice cover are increasing the levels of exposure of aquatic organisms to UV radiation. Climate change was also expected to increase exposure by causing shallow mixed layers, but new data show deepening in some regions and shoaling in others. In contrast, climate-change related increases in heavy precipitation and melting of glaciers and permafrost are increasing the concentration and colour of UV-absorbing dissolved organic matter (DOM) and particulates. This is leading to the "browning" of many inland and coastal waters, with consequent loss of the valuable ecosystem service in which solar UV radiation disinfects surface waters of parasites and pathogens. Many organisms can reduce damage due to exposure to UV radiation through behavioural avoidance, photoprotection, and photoenzymatic repair, but meta-analyses continue to confirm negative effects of UV radiation across all trophic levels. Modeling studies estimating photoinhibition of primary production in parts of the Pacific Ocean have demonstrated that the UV radiation component of sunlight leads to a 20% decrease in estimates of primary productivity. Exposure to UV radiation can also lead to positive effects on some organisms by damaging less UV-tolerant predators, competitors, and pathogens. UV radiation also contributes to the formation of microplastic pollutants and interacts with artificial sunscreens and other pollutants with adverse effects on aquatic ecosystems. Exposure to UV-B radiation can decrease the toxicity of some pollutants such as methyl mercury (due to its role in demethylation) but increase the toxicity of other pollutants such as some pesticides and polycyclic aromatic hydrocarbons. Feeding on microplastics by zooplankton can lead to bioaccumulation in fish. Microplastics are found in up to 20% of fish marketed for human consumption, potentially threatening food security. Depletion of stratospheric ozone has altered climate in the southern hemisphere in ways that have increased oceanic productivity and consequently the growth, survival and reproduction of many sea birds and mammals. In contrast, warmer sea surface temperatures related to these climate shifts are also correlated with declines in both kelp beds in Tasmania and corals in Brazil. This assessment demonstrates that knowledge of the interactive effects of ozone depletion, UV radiation, and climate change factors on aquatic ecosystems has advanced considerably over the past four years and confirms the importance of considering synergies between environmental factors.


Asunto(s)
Adaptación Biológica , Organismos Acuáticos/fisiología , Cambio Climático , Pérdida de Ozono , Rayos Ultravioleta , Animales , Acuicultura , Organismos Acuáticos/efectos de la radiación , Ecosistema , Contaminación Ambiental/efectos adversos , Contaminación Ambiental/análisis , Peces/fisiología , Agua Dulce/análisis , Cubierta de Hielo/química , Océanos y Mares , Fotosíntesis , Ozono Estratosférico/análisis , Rayos Ultravioleta/efectos adversos , Zooplancton/fisiología
2.
Photochem Photobiol Sci ; 11(1): 13-27, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22279621

RESUMEN

The parties to the Montreal Protocol are informed by three panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with two focal issues. The first focus is the effects of increased UV radiation on human health, animals, plants, biogeochemistry, air quality, and materials. The second focus is on interactions between UV radiation and global climate change and how these may affect humans and the environment. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than believed previously. As a result of this, human health and environmental problems will be longer-lasting and more regionally variable. Like the other panels, the EEAP produces a detailed report every four years; the most recent was published in 2010 (Photochem. Photobiol. Sci., 2011, 10, 173-300). In the years in between, the EEAP produces less detailed and shorter progress reports, which highlight and assess the significance of developments in key areas of importance to the parties. The next full quadrennial report will be published in 2014-2015.


Asunto(s)
Cambio Climático , Ozono/análisis , Animales , Humanos , Rayos Ultravioleta
3.
Photochem Photobiol Sci ; 9(3): 275-94, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20301813

RESUMEN

The parties to the Montreal Protocol are informed by three panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with UV radiation and its effects on human health, animals, plants, biogeochemistry, air quality and materials. Since 2000, the analyses and interpretation of these effects have included interactions between UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than believed previously. As a result of this, human health and environmental problems will likely be longer-lasting and more regionally variable. Like the other panels, the EEAP produces a detailed report every four years; the most recent was that for 2006 (Photochem. Photobiol. Sci., 2007, 6, 201-332). In the years in between, the EEAP produces a less detailed and shorter progress report, as is the case for this present one for 2009. A full quadrennial report will follow for 2010.


Asunto(s)
Cambio Climático , Ambiente , Ozono/análisis , Desarrollo de Programa , Aire/análisis , Animales , Ecosistema , Humanos , Rayos Ultravioleta/efectos adversos
4.
Photochem Photobiol Sci ; 8(1): 13-22, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19256109

RESUMEN

After the enthusiastic celebration of the 20th Anniversary of the Montreal Protocol on Substances that Deplete the Ozone Layer in 2007, the work for the protection of the ozone layer continues. The Environmental Effects Assessment Panel is one of the three expert panels within the Montreal Protocol. This EEAP deals with the increase of the UV irradiance on the Earth's surface and its effects on human health, animals, plants, biogeochemistry, air quality and materials. For the past few years, interactions of ozone depletion with climate change have also been considered. It has become clear that the environmental problems will be long-lasting. In spite of the fact that the worldwide production of ozone depleting chemicals has already been reduced by 95%, the environmental disturbances are expected to persist for about the next half a century, even if the protective work is actively continued, and completed. The latest full report was published in Photochem. Photobiol. Sci., 2007, 6, 201-332, and the last progress report in Photochem. Photobiol. Sci., 2008, 7, 15-27. The next full report on environmental effects is scheduled for the year 2010. The present progress report 2008 is one of the short interim reports, appearing annually.


Asunto(s)
Clima , Conservación de los Recursos Naturales , Ozono/química , Aerosoles , Animales , Humanos , Luz Solar
6.
Photochem Photobiol Sci ; 2(1): 39-50, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12659538

RESUMEN

Aquatic ecosystems are a key component of the Earth's biosphere. A large number of studies document substantial impact of solar UV radiation on individual species, yet considerable uncertainty remains with respect to assessing impacts on ecosystems. Several studies indicate that the impact of increased UV radiation appears relatively low when considering overall ecosystem response, while, in contrast, effects on individual species show considerable responses. Ecosystem response to climate variability incorporates both synergistic and antagonistic processes with respect to UV-related effects, significantly complicating understanding and prediction at the ecosystem level. The impact of climate variability on UV-related effects often becomes manifest via indirect effects such as reduction in sea ice, changes in water column bio-optical characteristics, changes in cloud cover and shifts in oceanographic biogeochemical provinces.


Asunto(s)
Clima , Ecosistema , Luz Solar , Rayos Ultravioleta , Agua , Animales , Cianobacterias/efectos de la radiación , Eucariontes/efectos de la radiación , Ozono , Plancton/efectos de la radiación , Poaceae/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Zooplancton/efectos de la radiación
7.
Oecologia ; 47(1): 56-60, 1980 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28309629

RESUMEN

Effects of ultraviolet radiation on the development of metabolism of estuarine bacterial populations in laboratory microecosystems were studied. When compared with bacterial populations developing under an ultraviolet-deficient condition, the heterotrophic populations from microecosystems exposed to an ultraviolet-supplemented sprectrum displayed an overall decrease in total numbers, an increase in the proportion of pigmented cells, a decrease in the number of cellulolytic microorganisms and an increase in heterotrophic respiration. Ultraviolet radiation in the 290-320 nm waveband was the apparent stressful environmental parameter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...