Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 79(10): 515, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100764

RESUMEN

Foamy macrophages and microglia containing lipid droplets (LDs) are a pathological hallmark of demyelinating disorders affecting the central nervous system (CNS). We and others showed that excessive accumulation of intracellular lipids drives these phagocytes towards a more inflammatory phenotype, thereby limiting CNS repair. To date, however, the mechanisms underlying LD biogenesis and breakdown in lipid-engorged phagocytes in the CNS, as well as their impact on foamy phagocyte biology and lesion progression, remain poorly understood. Here, we provide evidence that LD-associated protein perilipin-2 (PLIN2) controls LD metabolism in myelin-containing phagocytes. We show that PLIN2 protects LDs from lipolysis-mediated degradation, thereby impairing intracellular processing of myelin-derived lipids in phagocytes. Accordingly, loss of Plin2 stimulates LD turnover in foamy phagocytes, driving them towards a less inflammatory phenotype. Importantly, Plin2-deficiency markedly improves remyelination in the ex vivo brain slice model and in the in vivo cuprizone-induced demyelination model. In summary, we identify PLIN2 as a novel therapeutic target to prevent the pathogenic accumulation of LDs in foamy phagocytes and to stimulate remyelination.


Asunto(s)
Gotas Lipídicas , Remielinización , Gotas Lipídicas/metabolismo , Lípidos , Vaina de Mielina/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo
2.
J Neuroinflammation ; 18(1): 148, 2021 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-34218792

RESUMEN

BACKGROUND: Macrophages play a dual role in neuroinflammatory disorders such as multiple sclerosis (MS). They are involved in lesion onset and progression but can also promote the resolution of inflammation and repair of damaged tissue. In this study, we investigate if and how phloretin, a flavonoid abundantly present in apples and strawberries, lowers the inflammatory phenotype of macrophages and suppresses neuroinflammation. METHODS: Transcriptional changes in mouse bone marrow-derived macrophages upon phloretin exposure were assessed by bulk RNA sequencing. Underlying pathways related to inflammation, oxidative stress response and autophagy were validated by quantitative PCR, fluorescent and absorbance assays, nuclear factor erythroid 2-related factor 2 (Nrf2) knockout mice, western blot, and immunofluorescence. The experimental autoimmune encephalomyelitis (EAE) model was used to study the impact of phloretin on neuroinflammation in vivo and confirm underlying mechanisms. RESULTS: We show that phloretin reduces the inflammatory phenotype of macrophages and markedly suppresses neuroinflammation in EAE. Phloretin mediates its effect by activating the Nrf2 signaling pathway. Nrf2 activation was attributed to 5' AMP-activated protein kinase (AMPK)-dependent activation of autophagy and subsequent kelch-like ECH-associated protein 1 (Keap1) degradation. CONCLUSIONS: This study opens future perspectives for phloretin as a therapeutic strategy for neuroinflammatory disorders such as MS. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Autofagia/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Macrófagos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Floretina/farmacología , Animales , Autofagia/fisiología , Células Cultivadas , Factores Inmunológicos/farmacología , Factores Inmunológicos/uso terapéutico , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/deficiencia , Floretina/uso terapéutico
3.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297574

RESUMEN

Macrophages play a crucial role during the pathogenesis of multiple sclerosis (MS), a neuroinflammatory autoimmune disorder of the central nervous system. Important regulators of the metabolic and inflammatory phenotype of macrophages are liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs). Previously, it has been reported that PPARγ expression is decreased in peripheral blood mononuclear cells of MS patients. The goal of the present study was to determine to what extent PPARγ, as well as the closely related nuclear receptors PPARα and ß and LXRα and ß, are differentially expressed in monocytes from MS patients and how this change in expression affects the function of monocyte-derived macrophages. We demonstrate that monocytes of relapsing-remitting MS patients display a marked decrease in PPARγ expression, while the expression of PPARα and LXRα/ß is not altered. Interestingly, exposure of monocyte-derived macrophages from healthy donors to MS-associated proinflammatory cytokines mimicked this reduction in PPARγ expression. While a reduced PPARγ expression did not affect the inflammatory and phagocytic properties of myelin-loaded macrophages, it did impact myelin processing by increasing the intracellular cholesterol load of myelin-phagocytosing macrophages. Collectively, our findings indicate that an inflammation-induced reduction in PPARγ expression promotes myelin-induced foam cell formation in macrophages in MS.


Asunto(s)
Células Espumosas/metabolismo , Esclerosis Múltiple Recurrente-Remitente/metabolismo , PPAR gamma/metabolismo , Células Cultivadas , Humanos , Esclerosis Múltiple Recurrente-Remitente/genética , Esclerosis Múltiple Recurrente-Remitente/patología , Vaina de Mielina/metabolismo , PPAR gamma/genética
4.
Ther Adv Chronic Dis ; 11: 2040622320947378, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32913622

RESUMEN

BACKGROUND AND AIMS: Alemtuzumab is a humanized monoclonal antibody that depletes CD52-bearing B and T lymphocytes. Clinical trials defined that systemic administration of alemtuzumab reduces disease severity in the relapsing-remitting phase of multiple sclerosis (MS). However, its efficacy in progressive MS patients is limited, which may reflect the inability of alemtuzumab to cross the reconstituted BBB in these patients. Objective: to study whether central nervous system (CNS) delivery of anti-CD52 antibodies reduces disease severity and the neuroinflammatory burden in the experimental autoimmune encephalomyelitis (EAE) model. METHODS: Anti-CD52 antibodies were administered intrathecally during the acute and chronic phases of EAE. Flow cytometry and immunohistochemistry were utilized to define immunological and pathological parameters. RESULTS: We show that subcutaneously administrated anti-CD52 antibodies completely abolish EAE disease severity. CNS delivery of anti-CD52 antibodies during both the acute and chronic phases of EAE moderately reduces disease severity and the neuroinflammatory burden. Our findings further suggest that CNS delivery of anti-CD52 antibodies impacts both the peripheral and CNS immune cell compartments in the EAE model but not in healthy mice. CONCLUSION: Collectively, our findings highlight the therapeutic potential of CNS delivery of alemtuzumab for the treatment of progressive as well as early MS.

5.
J Neuroinflammation ; 17(1): 224, 2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32718316

RESUMEN

BACKGROUND: The presence of foamy macrophages and microglia containing intracellular myelin remnants is a pathological hallmark of neurodegenerative disorders such as multiple sclerosis (MS). Despite the importance of myelin internalization in affecting both central nervous system repair and neuroinflammation, the receptors involved in myelin clearance and their impact on the phagocyte phenotype and lesion progression remain to be clarified. METHODS: Flow cytometry, quantitative PCR, and immunohistochemistry were used to define the mRNA and protein abundance of CD36 in myelin-containing phagocytes. The impact of CD36 and nuclear factor erythroid 2-related factor 2 (NRF2) on the phagocytic and inflammatory features of macrophages and microglia was assessed using a pharmacological CD36 inhibitor (sulfo-N-succinimidyl oleate) and Nrf2-/- bone marrow-derived macrophages. Finally, the experimental autoimmune encephalomyelitis (EAE) model was used to establish the impact of CD36 inhibition on neuroinflammation and myelin phagocytosis in vivo. RESULTS: Here, we show that the fatty acid translocase CD36 is required for the uptake of myelin debris by macrophages and microglia, and that myelin internalization increased CD36 expression through NRF2. Pharmacological inhibition of CD36 promoted the inflammatory properties of myelin-containing macrophages and microglia in vitro, which was paralleled by a reduced activity of the anti-inflammatory lipid-sensing liver X receptors and peroxisome proliferator-activated receptors. By using the EAE model, we provide evidence that CD36 is essential for myelin debris clearance in vivo. Importantly, CD36 inhibition markedly increased the neuroinflammatory burden and disease severity in the EAE model. CONCLUSION: Altogether, we show for the first time that CD36 is crucial for clearing myelin debris and suppressing neuroinflammation in demyelinating disorders such as MS.


Asunto(s)
Antígenos CD36/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Vaina de Mielina/metabolismo , Fagocitosis/fisiología , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL
6.
J Exp Med ; 217(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32097464

RESUMEN

Failure of remyelination underlies the progressive nature of demyelinating diseases such as multiple sclerosis. Macrophages and microglia are crucially involved in the formation and repair of demyelinated lesions. Here we show that myelin uptake temporarily skewed these phagocytes toward a disease-resolving phenotype, while sustained intracellular accumulation of myelin induced a lesion-promoting phenotype. This phenotypic shift was controlled by stearoyl-CoA desaturase-1 (SCD1), an enzyme responsible for the desaturation of saturated fatty acids. Monounsaturated fatty acids generated by SCD1 reduced the surface abundance of the cholesterol efflux transporter ABCA1, which in turn promoted lipid accumulation and induced an inflammatory phagocyte phenotype. Pharmacological inhibition or phagocyte-specific deficiency of Scd1 accelerated remyelination ex vivo and in vivo. These findings identify SCD1 as a novel therapeutic target to promote remyelination.


Asunto(s)
Encéfalo/patología , Macrófagos/enzimología , Microglía/enzimología , Estearoil-CoA Desaturasa/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Animales , Línea Celular , Colesterol/metabolismo , Endocitosis , Ácidos Grasos/metabolismo , Células Espumosas/metabolismo , Humanos , Inflamación/patología , Macrófagos/metabolismo , Macrófagos/ultraestructura , Ratones , Microglía/metabolismo , Vaina de Mielina/metabolismo , Fagocitos/patología , Fagocitos/ultraestructura , Fenotipo , Proteína Quinasa C-delta/metabolismo , Estearoil-CoA Desaturasa/deficiencia
7.
Front Immunol ; 10: 1811, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417573

RESUMEN

Dysfunction of the blood-brain barrier (BBB) contributes significantly to the pathogenesis of several neuroinflammatory diseases, including multiple sclerosis (MS). Potential players that regulate BBB function are the liver X receptors (LXRs), which are ligand activated transcription factors comprising two isoforms, LXRα, and LXRß. However, the role of LXRα and LXRß in regulating BBB (dys)function during neuroinflammation remains unclear, as well as their individual involvement. Therefore, the goal of the present study is to unravel whether LXR isoforms have different roles in regulating BBB function under neuroinflammatory conditions. We demonstrate that LXRα, and not LXRß, is essential to maintain barrier integrity in vitro. Specific knockout of LXRα in brain endothelial cells resulted in a more permeable barrier with reduced expression of tight junctions. Additionally, the observed dysfunction was accompanied by increased endothelial inflammation, as detected by enhanced expression of vascular cell adhesion molecule (VCAM-1) and increased transendothelial migration of monocytes toward inflammatory stimuli. To unravel the importance of LXRα in BBB function in vivo, we made use of the experimental autoimmune encephalomyelitis (EAE) MS mouse model. Induction of EAE in a constitutive LXRα knockout mouse and in an endothelial specific LXRα knockout mouse resulted in a more severe disease score in these animals. This was accompanied by higher numbers of infiltrating leukocytes, increased endothelial VCAM-1 expression, and decreased expression of the tight junction molecule claudin-5. Together, this study reveals that LXRα is indispensable for maintaining BBB integrity and its immune quiescence. Targeting the LXRα isoform may help in the development of novel therapeutic strategies to prevent BBB dysfunction, and thereby neuroinflammatory disorders.


Asunto(s)
Barrera Hematoencefálica/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Células Endoteliales/inmunología , Receptores X del Hígado/inmunología , Animales , Barrera Hematoencefálica/patología , Línea Celular , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Células Endoteliales/patología , Técnicas de Silenciamiento del Gen , Humanos , Receptores X del Hígado/genética , Ratones , Ratones Noqueados , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología
8.
Mult Scler ; 24(3): 279-289, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28273782

RESUMEN

OBJECTIVE: We sought to determine the liver X receptor (LXR) ligands present in human macrophages after myelin phagocytosis and whether LXRs are activated in multiple sclerosis (MS) lesions. METHODS: We used real-time quantitative polymerase chain reaction (PCR) and immunohistochemistry to determine expression of LXRs and their response genes in human phagocytes after myelin phagocytosis and in active MS lesions. We used gas chromatographic/mass spectrometric analysis to determine LXR-activating oxysterols and cholesterol precursors present and formed in myelin and myelin-incubated cells, respectively. RESULTS: Myelin induced LXR response genes ABCA1 and ABCG1 in human monocyte-derived macrophages. In active MS lesions, we found that both gene expression and protein levels of ABCA1 and apolipoprotein E ( APOE) are upregulated in foamy phagocytes. Moreover, we found that the LXR ligand 27-hydroxycholesterol (27OHC) is significantly increased in human monocyte-derived macrophages after myelin uptake. CONCLUSION: LXR response genes are upregulated in phagocytes present in active MS lesions, indicating that LXRs are activated in actively demyelinating phagocytes. In addition, we have shown that myelin contains LXR ligands and that 27OHC is generated in human monocyte-derived macrophages after myelin processing. This suggests that LXRs in phagocytes in active MS lesions are activated at least partially by (oxy)sterols present in myelin and the generation thereof during myelin processing.


Asunto(s)
Encéfalo , Receptores X del Hígado/metabolismo , Macrófagos , Vaina de Mielina/metabolismo , Transducción de Señal , Bancos de Tejidos , Encéfalo/inmunología , Encéfalo/metabolismo , Células Cultivadas , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Esclerosis Múltiple
10.
Sci Rep ; 7: 44794, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28317919

RESUMEN

Myelin-containing macrophages and microglia are the most abundant immune cells in active multiple sclerosis (MS) lesions. Our recent transcriptomic analysis demonstrated that collectin placenta 1 (CL-P1) is one of the most potently induced genes in macrophages after uptake of myelin. CL-P1 is a type II transmembrane protein with both a collagen-like and carbohydrate recognition domain, which plays a key role in host defense. In this study we sought to determine the dynamics of CL-P1 expression on myelin-containing phagocytes and define the role that it plays in MS lesion development. We show that myelin uptake increases the cell surface expression of CL-P1 by mouse and human macrophages, but not by primary mouse microglia in vitro. In active demyelinating MS lesions, CL-P1 immunoreactivity was localized to perivascular and parenchymal myelin-laden phagocytes. Finally, we demonstrate that CL-P1 is involved in myelin internalization as knockdown of CL-P1 markedly reduced myelin uptake. Collectively, our data indicate that CL-P1 is a novel receptor involved in myelin uptake by phagocytes and likely plays a role in MS lesion development.


Asunto(s)
Colectinas/metabolismo , Vaina de Mielina/metabolismo , Fagocitos/metabolismo , Receptores Depuradores/metabolismo , Animales , Membrana Celular/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/patología , Células Mieloides/metabolismo , Células RAW 264.7
11.
Sci Rep ; 7: 43410, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28230201

RESUMEN

Lipoproteins modulate innate and adaptive immune responses. In the chronic inflammatory disease multiple sclerosis (MS), reports on lipoprotein level alterations are inconsistent and it is unclear whether lipoprotein function is affected. Using nuclear magnetic resonance (NMR) spectroscopy, we analysed the lipoprotein profile of relapsing-remitting (RR) MS patients, progressive MS patients and healthy controls (HC). We observed smaller LDL in RRMS patients compared to healthy controls and to progressive MS patients. Furthermore, low-BMI (BMI ≤ 23 kg/m2) RRMS patients show increased levels of small HDL (sHDL), accompanied by larger, triglyceride (TG)-rich VLDL, and a higher lipoprotein insulin resistance (LP-IR) index. These alterations coincide with a reduced serum capacity to accept cholesterol via ATP-binding cassette (ABC) transporter G1, an impaired ability of HDL3 to suppress inflammatory activity of human monocytes, and modifications of HDL3's main protein component ApoA-I. In summary, lipoprotein levels and function are altered in RRMS patients, especially in low-BMI patients, which may contribute to disease progression in these patients.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/sangre , Apolipoproteína A-I/sangre , Lipoproteínas HDL/sangre , Monocitos/inmunología , Esclerosis Múltiple Recurrente-Remitente/sangre , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Inmunidad Adaptativa , Adulto , Apolipoproteína A-I/genética , Índice de Masa Corporal , Estudios de Casos y Controles , LDL-Colesterol/sangre , VLDL-Colesterol/sangre , Progresión de la Enfermedad , Femenino , Expresión Génica , Humanos , Inmunidad Innata , Resistencia a la Insulina , Lipoproteínas HDL/clasificación , Lipoproteínas HDL/genética , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Monocitos/patología , Esclerosis Múltiple Recurrente-Remitente/genética , Esclerosis Múltiple Recurrente-Remitente/inmunología , Esclerosis Múltiple Recurrente-Remitente/patología , Triglicéridos/sangre
12.
BMC Res Notes ; 7: 357, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24916153

RESUMEN

BACKGROUND: Prostaglandins are important mediators of uterine contractility and cervical ripening during labour. Cyclooxygenase-2 (COX-2), also known as prostaglandin-endoperoxide synthase 2, is a rate limiting enzyme involved in the conversion of arachidonic acid into prostaglandins at parturition. In this paper, the pathways underlying agonist-induced cyclooxygenase-2 expression in human myometrial cells were studied. RESULTS: Myometrial cells were stimulated with different agonists: oxytocin (OXT), epidermal growth factor (EGF), interleukin-1ß (IL1ß), and phorbol-12-myristate-13-acetate (PMA) alone and in the presence of specific signalling pathway inhibitors. The nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB) pathway was inhibited by means of the IKK-2 inhibitor TPCA-1. Signalling through extracellular signal-regulated kinases (ERK) was inhibited using the MEK1/2 inhibitor PD-184352. Bisindolylmaleimide-I was used to inhibit protein kinase C (PKC) signalling. COX-2 expression and ERK phosphorylation were measured using immunoblotting.OXT induced COX-2 expression by activating PKC and ERK. EGF increased COX-2 expression via stimulation of PKC, ERK and NFKB. As expected, the pro-inflammatory cytokine IL1ß induced COX-2 expression by activating PKC- and NFKB-dependent pathways. Stimulation of PKC directly with PMA provoked strong COX-2 expression. CONCLUSIONS: PKC plays a central role in OXT and EGF induced COX-2 expression in human myometrial cells. However, other pathways, notably ERK and NFKB are also involved to an extent which depends on the type of agonist used.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Miometrio/metabolismo , Oxitocina/metabolismo , Proteína Quinasa C/metabolismo , Células Cultivadas , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Miometrio/citología , Miometrio/enzimología , Transducción de Señal , Acetato de Tetradecanoilforbol/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...