Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Brain Commun ; 6(3): fcae132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38707707

RESUMEN

Neurofilament light chain is an established marker of neuroaxonal injury that is elevated in CSF and blood across various neurological diseases. It is increasingly used in clinical practice to aid diagnosis and monitor progression and as an outcome measure to assess safety and efficacy of disease-modifying therapies across the clinical translational neuroscience field. Quantitative methods for neurofilament light chain in human biofluids have relied on immunoassays, which have limited capacity to describe the structure of the protein in CSF and how this might vary in different neurodegenerative diseases. In this study, we characterized and quantified neurofilament light chain species in CSF across neurodegenerative and neuroinflammatory diseases and healthy controls using targeted mass spectrometry. We show that the quantitative immunoprecipitation-tandem mass spectrometry method developed in this study strongly correlates to single-molecule array measurements in CSF across the broad spectrum of neurodegenerative diseases and was replicable across mass spectrometry methods and centres. In summary, we have created an accurate and cost-effective assay for measuring a key biomarker in translational neuroscience research and clinical practice, which can be easily multiplexed and translated into clinical laboratories for the screening and monitoring of neurodegenerative disease or acute brain injury.

2.
BMC Neurol ; 24(1): 40, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263061

RESUMEN

BACKGROUND: Although age is the biggest known risk factor for dementia, there remains uncertainty about other factors over the life course that contribute to a person's risk for cognitive decline later in life. Furthermore, the pathological processes leading to dementia are not fully understood. The main goals of Insight 46-a multi-phase longitudinal observational study-are to collect detailed cognitive, neurological, physical, cardiovascular, and sensory data; to combine those data with genetic and life-course information collected from the MRC National Survey of Health and Development (NSHD; 1946 British birth cohort); and thereby contribute to a better understanding of healthy ageing and dementia. METHODS/DESIGN: Phase 1 of Insight 46 (2015-2018) involved the recruitment of 502 members of the NSHD (median age = 70.7 years; 49% female) and has been described in detail by Lane and Parker et al. 2017. The present paper describes phase 2 (2018-2021) and phase 3 (2021-ongoing). Of the 502 phase 1 study members who were invited to a phase 2 research visit, 413 were willing to return for a clinic visit in London and 29 participated in a remote research assessment due to COVID-19 restrictions. Phase 3 aims to recruit 250 study members who previously participated in both phases 1 and 2 of Insight 46 (providing a third data time point) and 500 additional members of the NSHD who have not previously participated in Insight 46. DISCUSSION: The NSHD is the oldest and longest continuously running British birth cohort. Members of the NSHD are now at a critical point in their lives for us to investigate successful ageing and key age-related brain morbidities. Data collected from Insight 46 have the potential to greatly contribute to and impact the field of healthy ageing and dementia by combining unique life course data with longitudinal multiparametric clinical, imaging, and biomarker measurements. Further protocol enhancements are planned, including in-home sleep measurements and the engagement of participants through remote online cognitive testing. Data collected are and will continue to be made available to the scientific community.


Asunto(s)
Demencia , Anciano , Femenino , Humanos , Masculino , Envejecimiento , Atención Ambulatoria , Encéfalo , Estudios Observacionales como Asunto
3.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37425748

RESUMEN

Mutations in ITM2B cause familial British, Danish, Chinese and Korean dementias. In familial British dementia (FBD) a mutation in the stop codon of the ITM2B gene (also known as BRI2 ) causes a C-terminal cleavage fragment of the ITM2B/BRI2 protein to be extended by 11 amino acids. This fragment, termed amyloid-Bri (ABri), is highly insoluble and forms extracellular plaques in the brain. ABri plaques are accompanied by tau pathology, neuronal cell death and progressive dementia, with striking parallels to the aetiology and pathogenesis of Alzheimer's disease. The molecular mechanisms underpinning FBD are ill-defined. Using patient-derived induced pluripotent stem cells, we show that expression of ITM2B/BRI2 is 34-fold higher in microglia than neurons, and 15-fold higher in microglia compared with astrocytes. This cell-specific enrichment is supported by expression data from both mouse and human brain tissue. ITM2B/BRI2 protein levels are higher in iPSC-microglia compared with neurons and astrocytes. Consequently, the ABri peptide was detected in patient iPSC-derived microglial lysates and conditioned media but was undetectable in patient-derived neurons and control microglia. Pathological examination of post-mortem tissue support ABri expression in microglia that are in proximity to pre-amyloid deposits. Finally, gene co-expression analysis supports a role for ITM2B/BRI2 in disease-associated microglial responses. These data demonstrate that microglia are the major contributors to the production of amyloid forming peptides in FBD, potentially acting as instigators of neurodegeneration. Additionally, these data also suggest ITM2B/BRI2 may be part of a microglial response to disease, motivating further investigations of its role in microglial activation. This has implications for our understanding of the role of microglia and the innate immune response in the pathogenesis of FBD and other neurodegenerative dementias including Alzheimer's disease.

4.
Brain Commun ; 5(1): fcac321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36687397

RESUMEN

Mutations in the presenilin 1 gene, PSEN1, which cause familial Alzheimer's disease alter the processing of amyloid precursor protein, leading to the generation of various amyloid-ß peptide species. These species differ in their potential for aggregation. Mutation-specific amyloid-ß peptide profiles may thereby influence pathogenicity and clinical heterogeneity. There is particular interest in comparing mutations with typical and atypical clinical presentations, such as E280G. We generated PSEN1 E280G mutation induced pluripotent stem cells from two patients and differentiated them into cortical neurons, along with previously reported PSEN1 M146I, PSEN1 R278I and two control lines. We assessed both the amyloid-ß peptide profiles and presenilin 1 protein maturity. We also compared amyloid-ß peptide profiles in human post-mortem brain tissue from cases with matched mutations. Amyloid-ß ratios significantly differed compared with controls and between different patients, implicating mutation-specific alterations in amyloid-ß ratios. Amyloid-ß42:40 was increased in the M146I and both E280G lines compared with controls. Amyloid-ß42:40 was not increased in the R278I line compared with controls. The amyloid-ß43:40 ratio was increased in R278I and both E280G lines compared with controls, but not in M146I cells. Distinct amyloid-ß peptide patterns were also observed in human brain tissue from individuals with these mutations, showing some similar patterns to cell line observations. Reduced presenilin 1 maturation was observed in neurons with the PSEN1 R278I and E280G mutations, but not the M146I mutation. These results suggest that mutation location can differentially alter the presenilin 1 protein and affect its autoendoproteolysis and processivity, contributing to the pathological phenotype. Investigating differences in underlying molecular mechanisms of familial Alzheimer's disease may inform our understanding of clinical heterogeneity.

5.
Glia ; 71(4): 1036-1056, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36571248

RESUMEN

One form of early life stress, prenatal exposure to glucocorticoids (GCs), confers a higher risk of psychiatric and neurodevelopmental disorders in later life. Increasingly, the importance of microglia in these disorders is recognized. Studies on GCs exposure during microglial development have been limited, and there are few, if any, human studies. We established an in vitro model of ELS by continuous pre-exposure of human iPS-microglia to GCs during primitive hematopoiesis (the critical stage of iPS-microglial differentiation) and then examined how this exposure affected the microglial phenotype as they differentiated and matured to microglia, using RNA-seq analyses and functional assays. The iPS-microglia predominantly expressed glucocorticoid receptors over mineralocorticoid receptors, and in particular, the GR-α splice variant. Chronic GCs exposure during primitive hematopoiesis was able to recapitulate in vivo ELS effects. Thus, pre-exposure to prolonged GCs resulted in increased type I interferon signaling, the presence of Cyclic GMP-AMP synthase-positive (cGAS) micronuclei, cellular senescence and reduced proliferation in the matured iPS-microglia. The findings from this in vitro ELS model have ramifications for the responses of microglia in the pathogenesis of GC- mediated ELS-associated disorders such as schizophrenia, attention-deficit hyperactivity disorder and autism spectrum disorder.


Asunto(s)
Experiencias Adversas de la Infancia , Glucocorticoides , Microglía , Receptores de Glucocorticoides , Humanos , Trastorno del Espectro Autista/etiología , Inestabilidad Genómica , Glucocorticoides/efectos adversos , Glucocorticoides/metabolismo , Microglía/efectos de los fármacos , Microglía/fisiología , Células Progenitoras Mieloides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Interferón Tipo I/metabolismo
7.
Front Neurosci ; 16: 835645, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360155

RESUMEN

Amyloid precursor protein (APP) and its cleavage fragment Amyloid-ß (Aß) have fundamental roles in Alzheimer's disease (AD). Genetic alterations that either increase the overall dosage of APP or alter its processing to favour the generation of longer, more aggregation prone Aß species, are directly causative of the disease. People living with one copy of APP are asymptomatic and reducing APP has been shown to lower the relative production of aggregation-prone Aß species in vitro. For these reasons, reducing APP expression is an attractive approach for AD treatment and prevention. In this review, we will describe the structure and the known functions of APP and go on to discuss the biological consequences of APP knockdown and knockout in model systems. We highlight progress in therapeutic strategies to reverse AD pathology via reducing APP expression. We conclude that new technologies that reduce the dosage of APP expression may allow disease modification and slow clinical progression, delaying or even preventing onset.

8.
Aging Cell ; 21(2): e13549, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35026048

RESUMEN

Hexanucleotide repeat expansions in C9orf72 are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The mechanisms by which the expansions cause disease are not properly understood but a favoured route involves its translation into dipeptide repeat (DPR) polypeptides, some of which are neurotoxic. However, the precise targets for mutant C9orf72 and DPR toxicity are not fully clear, and damage to several neuronal functions has been described. Many of these functions are regulated by signalling between the endoplasmic reticulum (ER) and mitochondria. ER-mitochondria signalling requires close physical contacts between the two organelles that are mediated by the VAPB-PTPIP51 'tethering' proteins. Here, we show that ER-mitochondria signalling and the VAPB-PTPIP51 tethers are disrupted in neurons derived from induced pluripotent stem (iPS) cells from patients carrying ALS/FTD pathogenic C9orf72 expansions and in affected neurons in mutant C9orf72 transgenic mice. In these mice, disruption of the VAPB-PTPIP51 tethers occurs prior to disease onset suggesting that it contributes to the pathogenic process. We also show that neurotoxic DPRs disrupt the VAPB-PTPIP51 interaction and ER-mitochondria contacts and that this may involve activation of glycogen synthase kinases-3ß (GSK3ß), a known negative regulator of VAPB-PTPIP51 binding. Finally, we show that these DPRs disrupt delivery of Ca2+ from ER stores to mitochondria, which is a primary function of the VAPB-PTPIP51 tethers. This delivery regulates a number of key neuronal functions that are damaged in ALS/FTD including bioenergetics, autophagy and synaptic function. Our findings reveal a new molecular target for mutant C9orf72-mediated toxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Esclerosis Amiotrófica Lateral/patología , Animales , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Humanos , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo
9.
Alzheimers Dement ; 18(2): 318-338, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34057756

RESUMEN

INTRODUCTION: The second most common form of early-onset dementia-frontotemporal dementia (FTD)-is often characterized by the aggregation of the microtubule-associated protein tau. Here we studied the mechanism of tau-induced neuronal dysfunction in neurons with the FTD-related 10+16 MAPT mutation. METHODS: Live imaging, electrophysiology, and redox proteomics were used in 10+16 induced pluripotent stem cell-derived neurons and a model of tau spreading in primary cultures. RESULTS: Overproduction of mitochondrial reactive oxygen species (ROS) in 10+16 neurons alters the trafficking of specific glutamate receptor subunits via redox regulation. Increased surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors containing GluA1 and NR2B subunits leads to impaired glutamatergic signaling, calcium overload, and excitotoxicity. Mitochondrial antioxidants restore the altered response and prevent neuronal death. Importantly, extracellular 4R tau induces the same pathological response in healthy neurons, thus proposing a mechanism for disease propagation. DISCUSSION: These results demonstrate mitochondrial ROS modulate glutamatergic signaling in FTD, and suggest a new therapeutic strategy.


Asunto(s)
Demencia Frontotemporal , Células Madre Pluripotentes Inducidas , Demencia Frontotemporal/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mitocondrias , Neuronas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas tau/metabolismo
10.
J Cell Mol Med ; 26(4): 1327-1331, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34951131

RESUMEN

The microtubule-associated protein tau gene (MAPT) 10+16 intronic mutation causes frontotemporal lobar degeneration (FTLD) by increasing expression of four-repeat (4R)-tau isoforms. We investigated the potential role for astrocytes in the pathogenesis of FTLD by studying the expression of 4R-tau. We derived astrocytes and neurons from induced pluripotent stem cells from two asymptomatic 10+16 carriers which, compared to controls, showed persistently increased 4R:3R-tau transcript and protein ratios in both cell types. However, beyond 300 days culture, 10+16 neurons showed less marked increase of this 4R:3R-tau transcript ratio compared to astrocytes. Interestingly, throughout maturation, both 10+16 carriers consistently displayed different 4R:3R-tau transcript and protein ratios. These elevated levels of 4R-tau in astrocytes implicate glial cells in the pathogenic process and also suggests a cell-type-specific regulation and may inform and help on treatment of pre-clinical tauopathies.


Asunto(s)
Degeneración Lobar Frontotemporal , Tauopatías , Proteínas tau , Astrocitos/metabolismo , Humanos , Mutación/genética , Isoformas de Proteínas/genética , Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
11.
Cells ; 10(11)2021 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-34831089

RESUMEN

Microglial exosomes are an emerging communication pathway, implicated in fulfilling homeostatic microglial functions and transmitting neurodegenerative signals. Gene variants of triggering receptor expressed on myeloid cells-2 (TREM2) are associated with an increased risk of developing dementia. We investigated the influence of the TREM2 Alzheimer's disease risk variant, R47Hhet, on the microglial exosomal proteome consisting of 3019 proteins secreted from human iPS-derived microglia (iPS-Mg). Exosomal protein content changed according to how the iPS-Mg were stimulated. Thus lipopolysaccharide (LPS) induced microglial exosomes to contain more inflammatory signals, whilst stimulation with the TREM2 ligand phosphatidylserine (PS+) increased metabolic signals within the microglial exosomes. We tested the effect of these exosomes on neurons and found that the exosomal protein changes were functionally relevant and influenced downstream functions in both neurons and microglia. Exosomes from R47Hhet iPS-Mg contained disease-associated microglial (DAM) signature proteins and were less able to promote the outgrowth of neuronal processes and increase mitochondrial metabolism in neurons compared with exosomes from the common TREM2 variant iPS-Mg. Taken together, these data highlight the importance of microglial exosomes in fulfilling microglial functions. Additionally, variations in the exosomal proteome influenced by the R47Hhet TREM2 variant may underlie the increased risk of Alzheimer's disease associated with this variant.


Asunto(s)
Exosomas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Microglía/citología , Neuronas/metabolismo , Proteómica , Línea Celular , Humanos , Inflamación/patología , Microglía/metabolismo , Proteoma/metabolismo
12.
Brain Commun ; 3(2): fcab009, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34704019

RESUMEN

Variants in the triggering receptor expressed on myeloid cells 2 gene are linked with an increased risk of dementia, in particular the R47Hhet triggering receptor expressed on myeloid cells 2 variant is linked to late-onset Alzheimer's disease. Using human induced pluripotent stem cells-derived microglia, we assessed whether variations in the dynamics of exosome secretion, including their components, from these cells might underlie some of this risk. We found exosome size was not altered between common variant controls and R47Hhet variants, but the amount and constitution of exosomes secreted were different. Exosome quantities were rescued by incubation with an ATP donor or with lipids via a phosphatidylserine triggering receptor expressed on myeloid cells 2 ligand. Following a lipopolysaccharide or phagocytic cell stimulus, exosomes from common variant and R47Hhet microglia were found to contain cytokines, chemokines, APOE and triggering receptor expressed on myeloid cells 2. Differences were observed in the expression of CCL22, IL-1ß and triggering receptor expressed on myeloid cells 2 between common variant and R47Hhet derived exosomes. Furthermore unlike common variant-derived exosomes, R47Hhet exosomes contained additional proteins linked to negative regulation of transcription and metabolic processes. Subsequent addition of exosomes to stressed neurones showed R47Hhet-derived exosomes to be less protective. These data have ramifications for the responses of microglia in Alzheimer's disease and may point to further targets for therapeutic intervention.

13.
Cell Death Dis ; 12(8): 716, 2021 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-34274950

RESUMEN

Human iPSC lines represent a powerful translational model of tauopathies. We have recently described a pathophysiological phenotype of neuronal excitability of human cells derived from the patients with familial frontotemporal dementia and parkinsonism (FTDP-17) caused by the MAPT 10+16 splice-site mutation. This mutation leads to the increased splicing of 4R tau isoforms. However, the role of different isoforms of tau protein in initiating neuronal dementia-related dysfunction, and the causality between the MAPT 10+16 mutation and altered neuronal activity have remained unclear. Here, we employed genetically engineered cells, in which the IVS10+16 mutation was introduced into healthy donor iPSCs to increase the expression of 4R tau isoform in exon 10, aiming to explore key physiological traits of iPSC-derived MAPT IVS10+16 neurons using patch-clamp electrophysiology and multiphoton fluorescent imaging techniques. We found that during late in vitro neurogenesis (from ~180 to 230 days) iPSC-derived cortical neurons of the control group (parental wild-type tau) exhibited membrane properties compatible with "mature" neurons. In contrast, MAPT IVS10+16 neurons displayed impaired excitability, as reflected by a depolarized resting membrane potential, an increased input resistance, and reduced voltage-gated Na+- and K+-channel-mediated currents. The mutation changed the channel properties of fast-inactivating Nav and decreased the Nav1.6 protein level. MAPT IVS10+16 neurons exhibited reduced firing accompanied by a changed action potential waveform and severely disturbed intracellular Ca2+ dynamics, both in the soma and dendrites, upon neuronal depolarization. These results unveil a causal link between the MAPT 10+16 mutation, hence overproduction of 4R tau, and a dysfunction of human cells, identifying a biophysical basis of changed neuronal activity in 4R tau-triggered dementia. Our study lends further support to using iPSC lines as a suitable platform for modelling tau-induced human neuropathology in vitro.


Asunto(s)
Demencia/genética , Demencia/fisiopatología , Ingeniería Genética , Células Madre Pluripotentes Inducidas/patología , Mutación/genética , Neuronas/patología , Proteínas tau/genética , Potenciales de Acción , Línea Celular , Membrana Celular/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Neurogénesis , Canales de Potasio/metabolismo , Canales de Sodio/metabolismo
14.
Nature ; 594(7861): 117-123, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34012113

RESUMEN

The human genome expresses thousands of natural antisense transcripts (NAT) that can regulate epigenetic state, transcription, RNA stability or translation of their overlapping genes1,2. Here we describe MAPT-AS1, a brain-enriched NAT that is conserved in primates and contains an embedded mammalian-wide interspersed repeat (MIR), which represses tau translation by competing for ribosomal RNA pairing with the MAPT mRNA internal ribosome entry site3. MAPT encodes tau, a neuronal intrinsically disordered protein (IDP) that stabilizes axonal microtubules. Hyperphosphorylated, aggregation-prone tau forms the hallmark inclusions of tauopathies4. Mutations in MAPT cause familial frontotemporal dementia, and common variations forming the MAPT H1 haplotype are a significant risk factor in many tauopathies5 and Parkinson's disease. Notably, expression of MAPT-AS1 or minimal essential sequences from MAPT-AS1 (including MIR) reduces-whereas silencing MAPT-AS1 expression increases-neuronal tau levels, and correlate with tau pathology in human brain. Moreover, we identified many additional NATs with embedded MIRs (MIR-NATs), which are overrepresented at coding genes linked to neurodegeneration and/or encoding IDPs, and confirmed MIR-NAT-mediated translational control of one such gene, PLCG1. These results demonstrate a key role for MAPT-AS1 in tauopathies and reveal a potentially broad contribution of MIR-NATs to the tightly controlled translation of IDPs6, with particular relevance for proteostasis in neurodegeneration.


Asunto(s)
Biosíntesis de Proteínas/genética , Proteostasis/genética , ARN sin Sentido/genética , Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Anciano , Animales , Sitios de Unión , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Diferenciación Celular , Progresión de la Enfermedad , Femenino , Humanos , Sitios Internos de Entrada al Ribosoma/genética , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Neuronas/metabolismo , Neuronas/patología , Ribosomas/metabolismo , Proteínas tau/biosíntesis
15.
Brain ; 144(10): 2964-2970, 2021 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-33892504

RESUMEN

In vitro studies of autosomal dominant Alzheimer's disease implicate longer amyloid-ß peptides in disease pathogenesis; however, less is known about the behaviour of these mutations in vivo. In this cross-sectional cohort study, we used liquid chromatography-tandem mass spectrometry to analyse 66 plasma samples from individuals who were at risk of inheriting a mutation or were symptomatic. We tested for differences in amyloid-ß (Aß)42:38, Aß42:40 and Aß38:40 ratios between presenilin 1 (PSEN1) and amyloid precursor protein (APP) carriers. We examined the relationship between plasma and in vitro models of amyloid-ß processing and tested for associations with parental age at onset. Thirty-nine participants were mutation carriers (28 PSEN1 and 11 APP). Age- and sex-adjusted models showed marked differences in plasma amyloid-ß between genotypes: higher Aß42:38 in PSEN1 versus APP (P < 0.001) and non-carriers (P < 0.001); higher Aß38:40 in APP versus PSEN1 (P < 0.001) and non-carriers (P < 0.001); while Aß42:40 was higher in both mutation groups compared to non-carriers (both P < 0.001). Amyloid-ß profiles were reasonably consistent in plasma and cell lines. Within the PSEN1 group, models demonstrated associations between Aß42:38, Aß42:40 and Aß38:40 ratios and parental age at onset. In vivo differences in amyloid-ß processing between PSEN1 and APP carriers provide insights into disease pathophysiology, which can inform therapy development.


Asunto(s)
Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/sangre , Péptidos beta-Amiloides/genética , Presenilina-1/sangre , Presenilina-1/genética , Adulto , Enfermedad de Alzheimer/diagnóstico , Biomarcadores/sangre , Estudios de Cohortes , Estudios Transversales , Femenino , Genotipo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Estudios Longitudinales , Masculino , Persona de Mediana Edad
16.
Stem Cell Reports ; 16(5): 1276-1289, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33891871

RESUMEN

Sequestosome-1 (SQSTM1/p62) is involved in cellular processes such as autophagy and metabolic reprogramming. Mutations resulting in the loss of function of SQSTM1 lead to neurodegenerative diseases including frontotemporal dementia. The pathogenic mechanism that contributes to SQSTM1-related neurodegeneration has been linked to its role as an autophagy adaptor, but this is poorly understood, and its precise role in mitochondrial function and clearance remains to be clarified. Here, we assessed the importance of SQSTM1 in human induced pluripotent stem cell (iPSC)-derived cortical neurons through the knockout of SQSTM1. We show that SQSTM1 depletion causes altered mitochondrial gene expression and functionality, as well as autophagy flux, in iPSC-derived neurons. However, SQSTM1 is not essential for mitophagy despite having a significant impact on early PINK1-dependent mitophagy processes including PINK1 recruitment and phosphorylation of ubiquitin on depolarized mitochondria. These findings suggest that SQSTM1 is important for mitochondrial function rather than clearance.


Asunto(s)
Corteza Cerebral/citología , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteína Sequestosoma-1/metabolismo , Diferenciación Celular , Respiración de la Célula , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias/patología , Mitofagia , Fosforilación Oxidativa , Proteínas Quinasas/metabolismo , Reproducibilidad de los Resultados
17.
J Neurochem ; 159(2): 305-317, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33539581

RESUMEN

Induced pluripotent stem cell (iPSC) technology enables the generation of human neurons in vitro, which contain the precise genome of the cell donor, therefore permitting the generation of disease models from individuals with a disease-associated genotype of interest. This approach has been extensively used to model inherited forms of Alzheimer's disease and frontotemporal dementia. The combination of iPSC-derived neuronal models with targeted mass spectrometry analysis has provided unprecedented insights into the regulation of specific proteins in human neuronal physiology and pathology. For example enabling investigations into tau and APP/Aß, specifically: protein isoform expression, relative levels of cleavage fragments, aggregated species and functionally critical post-translational modifications. The use of mass spectrometry has enabled a determination of how closely iPSC-derived models recapitulate disease profiles observed in the human brain. This review will highlight the progress to date in studies using iPSCs and mass spectrometry to model Alzheimer's disease and dementia. We go on to convey our optimism, as studies in the near future will make use of this precedent, together with novel techniques such as genome editing and stable isotope labelling, to provide real progress towards an in depth understanding of early neurodegenerative processes and development of novel therapeutic agents.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/análisis , Demencia/metabolismo , Células Madre Pluripotentes Inducidas/química , Espectrometría de Masas/métodos , Proteínas tau/análisis , Animales , Modelos Animales de Enfermedad , Humanos
18.
Cell Rep ; 34(2): 108615, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33440141

RESUMEN

Mutations in presenilin 1 (PSEN1) or presenilin 2 (PSEN2), the catalytic subunit of γ-secretase, cause familial Alzheimer's disease (fAD). We hypothesized that mutations in PSEN1 reduce Notch signaling and alter neurogenesis. Expression data from developmental and adult neurogenesis show relative enrichment of Notch and γ-secretase expression in stem cells, whereas expression of APP and ß-secretase is enriched in neurons. We observe premature neurogenesis in fAD iPSCs harboring PSEN1 mutations using two orthogonal systems: cortical differentiation in 2D and cerebral organoid generation in 3D. This is partly driven by reduced Notch signaling. We extend these studies to adult hippocampal neurogenesis in mutation-confirmed postmortem tissue. fAD cases show mutation-specific effects and a trend toward reduced abundance of newborn neurons, supporting a premature aging phenotype. Altogether, these results support altered neurogenesis as a result of fAD mutations and suggest that neural stem cell biology is affected in aging and disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Mutación , Células-Madre Neurales/patología , Presenilina-1/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células-Madre Neurales/metabolismo , Neurogénesis , Presenilina-1/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo
19.
Semin Cell Dev Biol ; 111: 60-66, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32513498

RESUMEN

Neurodegenerative Diseases such as Alzheimer's Disease represent a major public health challenge, with no disease modifying therapies available. The availability of induced pluripotent stem cells from patients with phenotypes and genotypes of interest, that can be subsequently differentiated in vitro into disease-affected cell types, has revolutionised our ability to generate physiologically relevant disease models. The recent availability of brain organoids - self-organising in vitro tissue models - as enabled the generation of complex, multicellular systems to study brain development and disease. Although widely used for modelling neurodevelopment, early studies have demonstrated great promise in the use of organoids as models of neurodegenerative disease. Here, I will review recent progress to model neurodegenerative diseases using organoids and comment on future directions and challenges.


Asunto(s)
Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/genética , Enfermedad de Huntington/genética , Modelos Biológicos , Organoides/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Encéfalo/patología , Diferenciación Celular , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Síndrome de Creutzfeldt-Jakob/fisiopatología , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Enfermedad de Huntington/fisiopatología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Organoides/citología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Técnicas de Cultivo de Tejidos
20.
Mol Cell Neurosci ; 109: 103553, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32956830

RESUMEN

Frontotemporal dementia (FTD) describes a group of clinically heterogeneous conditions that frequently affect people under the age of 65 (Le Ber et al., 2013). There are multiple genetic causes of FTD, including coding or splice-site mutations in MAPT, GRN mutations that lead to haploinsufficiency of progranulin protein, and a hexanucleotide GGGGCC repeat expansion in C9ORF72. Pathologically, FTD is characterised by abnormal protein accumulations in neurons and glia. These aggregates can be composed of the microtubule-associated protein tau (observed in FTD with MAPT mutations), the DNA/RNA-binding protein TDP-43 (seen in FTD with mutations in GRN or C9ORF72 repeat expansions) or dipeptide proteins generated by repeat associated non-ATG translation of the C9ORF72 repeat expansion. There are currently no disease-modifying therapies for FTD and the availability of in vitro models that recapitulate pathologies in a disease-relevant cell type would accelerate the development of novel therapeutics. It is now possible to generate patient-specific stem cells through the reprogramming of somatic cells from a patient with a genotype/phenotype of interest into induced pluripotent stem cells (iPSCs). iPSCs can subsequently be differentiated into a plethora of cell types including neurons, astrocytes and microglia. Using this approach has allowed researchers to generate in vitro models of genetic FTD in human cell types that are largely inaccessible during life. In this review we explore the recent progress in the use of iPSCs to model FTD, and consider the merits, limitations and future prospects of this approach.


Asunto(s)
Demencia Frontotemporal/genética , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas tau/genética , Axones/metabolismo , Transporte Biológico , Proteína C9orf72/genética , Proteína C9orf72/fisiología , Diferenciación Celular , Técnicas de Reprogramación Celular , Expansión de las Repeticiones de ADN , Proteínas de Unión al ADN/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos , Intrones/genética , Microtúbulos/fisiología , Mitocondrias/fisiología , Modelos Genéticos , Mutación Missense , Degeneración Nerviosa , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Organoides , Progranulinas/genética , Progranulinas/fisiología , Agregación Patológica de Proteínas , Isoformas de Proteínas , Empalme de Proteína , Especies Reactivas de Oxígeno , Proteínas tau/química , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...