Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(42): eadi9127, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37862413

RESUMEN

We present an adaptive optical neural network based on a large-scale event-driven architecture. In addition to changing the synaptic weights (synaptic plasticity), the optical neural network's structure can also be reconfigured enabling various functionalities (structural plasticity). Key building blocks are wavelength-addressable artificial neurons with embedded phase-change materials that implement nonlinear activation functions and nonvolatile memory. Using multimode focusing, the activation function features both excitatory and inhibitory responses and shows a reversible switching contrast of 3.2 decibels. We train the neural network to distinguish between English and German text samples via an evolutionary algorithm. We investigate both the synaptic and structural plasticity during the training process. On the basis of this concept, we realize a large-scale network consisting of 736 subnetworks with 16 phase-change material neurons each. Overall, 8398 neurons are functional, highlighting the scalability of the photonic architecture.

2.
Opt Express ; 30(14): 25177-25194, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-36237054

RESUMEN

The photonics platform has been considered increasingly promising for neuromorphic computing, due to its potential in providing low latency and energy efficient large-scale parallel connectivity. Phase change materials (PCMs) have been recently employed to introduce all-optical non-volatile memory in integrated photonic circuits, especially finding application as non-volatile weighting element in photonic artificial neural networks. Interestingly, these weighting elements can potentially be used as building blocks for large-scale networks that can autonomously adapt to their input, i.e. presenting the property of plasticity, similarly to the biological brain. In this work, we develop a computationally efficient dynamical model of a silicon ring resonator (RR) enhanced by a phase change material, namely Ge2Sb2Te5 (GST). We do so starting from two existing dynamical models (of a silicon RR and of a GST thin film on a straight silicon waveguide), but extending the optical equations to properly account for the high absorption and asymmetry in the ring due to the phase change material. Our model accounts for silicon nonlinear effects due to free carriers and temperature, as well as for the phase change of GST, whose energy efficiency and optical contrast can be enhanced by the RR resonant behaviour. We also restructure the optical equations so that the model can be efficiently employed in a modular way within a commercial software for system-level photonics simulations. Moreover, exploiting the developed model, we explore several design parameters and show that both speed and energy efficiency of memory operations can be enhanced by factors from six to ten. Also, we show that the achievable optical contrast due to GST phase change can be increased by more than a factor ten by leveraging the resonant properties of the RR, at the expense of higher optical loss. Finally, by exploiting the nonlinear dynamics arising in silicon RR networks, we show that a strong contrast is achievable while preserving energy efficiency.

3.
Nanomaterials (Basel) ; 12(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35957120

RESUMEN

The control of a lens's numerical aperture has potential applications in areas such as photography and imaging, displays, sensing, laser processing and even laser-implosion fusion. In such fields, the ability to control lens properties dynamically is of much interest, and active meta-lenses of various kinds are under investigation due to their modulation speed and compactness. However, as of yet, meta-lenses that explicitly offer dynamic control of a lens's numerical aperture have received little attention. Here, we design and simulate active meta-lenses (specifically, focusing meta-mirrors) using chalcogenide phase-change materials to provide such control. We show that, operating at a wavelength of 3000 nm, our devices can change the numerical aperture by up to a factor of 1.85 and operate at optical intensities of the order of 1.2 × 109 Wm-2. Furthermore, we show the scalability of our design towards shorter wavelengths (visible spectrum), where we demonstrate a change in NA by a factor of 1.92.

4.
Sci Adv ; 8(22): eabn3243, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35648858

RESUMEN

With more and more aspects of modern life and scientific tools becoming digitized, the amount of data being generated is growing exponentially. Fast and efficient statistical processing, such as identifying correlations in big datasets, is therefore becoming increasingly important, and this, on account of the various compute bottlenecks in modern digital machines, has necessitated new computational paradigms. Here, we demonstrate one such novel paradigm, via the development of an integrated phase-change photonics engine. The computational memory engine exploits the accumulative property of Ge2Sb2Te5 phase-change cells and wavelength division multiplexing property of optics in delivering fully parallelized and colocated temporal correlation detection computations. We investigate this property and present an experimental demonstration of identifying real-time correlations in data streams on the social media platform Twitter and high-traffic computing nodes in data centers. Our results demonstrate the use case of high-speed integrated photonics in accelerating statistical analysis methods.

5.
Sci Adv ; 8(24): eabn9459, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35704585

RESUMEN

Wavelength and polarization are two fundamental properties of light within which information can be encoded and (de)multiplexed. While wavelength-selective systems have widely proliferated, polarization-addressable active photonics has not seen notable progress, primarily because tunable and polarization-selective nanostructures have been elusive. Here, we introduce hybridized-active-dielectric (HAD) nanowires to achieve polarization-selective tunability. We then demonstrate the ability to use polarization as a parameter to selectively modulate the conductance of individual nanowires within a multi-nanowire system. By using polarization as the tunable vector, we show matrix-vector multiplication in a nanowire device configuration. While our HAD nanowires use phase-change materials as the active material, this concept is readily generalized to other active materials hybridized with dielectrics and thus has the potential in a broad range of applications from photonic memories and routing to polarization-multiplexed computing.

6.
Nat Commun ; 13(1): 2247, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35474061

RESUMEN

Neuromorphic hardware that emulates biological computations is a key driver of progress in AI. For example, memristive technologies, including chalcogenide-based in-memory computing concepts, have been employed to dramatically accelerate and increase the efficiency of basic neural operations. However, powerful mechanisms such as reinforcement learning and dendritic computation require more advanced device operations involving multiple interacting signals. Here we show that nano-scaled films of chalcogenide semiconductors can perform such multi-factor in-memory computation where their tunable electronic and optical properties are jointly exploited. We demonstrate that ultrathin photoactive cavities of Ge-doped Selenide can emulate synapses with three-factor neo-Hebbian plasticity and dendrites with shunting inhibition. We apply these properties to solve a maze game through on-device reinforcement learning, as well as to provide a single-neuron solution to linearly inseparable XOR implementation.


Asunto(s)
Redes Neurales de la Computación , Sinapsis , Electrónica , Aprendizaje , Neuronas/fisiología , Sinapsis/fisiología
7.
Adv Sci (Weinh) ; 9(20): e2200383, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35434939

RESUMEN

The ever-increasing demands for data processing and storage will require seamless monolithic co-integration of electronics and photonics. Phase-change materials are uniquely suited to fulfill this function due to their dual electro-optical sensitivity, nonvolatile retention properties, and fast switching dynamics. The extreme size disparity however between CMOS electronics and dielectric photonics inhibits the realization of efficient and compact electrically driven photonic switches, logic and routing elements. Here, the authors achieve an important milestone in harmonizing the two domains by demonstrating an electrically reconfigurable, ultra-compact and nonvolatile memory that is optically accessible. The platform relies on localized heat, generated within a plasmonic structure; this uniquely allows for both optical and electrical readout signals to be interlocked with the material state of the PCM while still ensuring that the writing operation is electrically decoupled. Importantly, by miniaturization and effective thermal engineering, the authors achieve unprecedented energy efficiency, opening up a path towards low-energy optoelectronic hardware for neuromorphic and in-memory computing.

8.
ACS Appl Mater Interfaces ; 14(2): 3446-3454, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34981913

RESUMEN

Plasmonic metasurfaces based on the extraordinary optical transmission (EOT) effect can be designed to efficiently transmit specific spectral bands from the visible to the far-infrared regimes, offering numerous applications in important technological fields such as compact multispectral imaging, biological and chemical sensing, or color displays. However, due to their subwavelength nature, EOT metasurfaces are nowadays fabricated with nano- and micro-lithographic techniques, requiring many processing steps and carrying out in expensive cleanroom environments. In this work, we propose and experimentally demonstrate a novel, single-step process for the rapid fabrication of high-performance mid- and long-wave infrared EOT metasurfaces employing ultrafast direct laser writing. Microhole arrays composing extraordinary transmission metasurfaces were fabricated over an area of 4 mm2 in timescales of units of minutes, employing single pulse ablation of 40 nm thick Au films on dielectric substrates mounted on a high-precision motorized stage. We show how by carefully characterizing the influence of only three key experimental parameters on the processed micro-morphologies (namely, laser pulse energy, scan velocity, and beam shaping slit), we can have on-demand control of the optical characteristics of the extraordinary transmission effect in terms of transmission wavelength, quality factor, and polarization sensitivity of the resonances. To illustrate this concept, a set of EOT metasurfaces having different performances and operating in different spectral regimes has been successfully designed, fabricated, and tested. Comparison between transmittance measurements and numerical simulations has revealed that all the fabricated devices behave as expected, thus demonstrating the high performance, flexibility, and reliability of the proposed fabrication method. We believe that our findings provide the pillars for mass production of EOT metasurfaces with on-demand optical properties and create new research trends toward single-step laser fabrication of metasurfaces with alternative geometries and/or functionalities.

9.
Nanomaterials (Basel) ; 11(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670812

RESUMEN

Materials of which the refractive indices can be thermally tuned or switched, such as in chalcogenide phase-change alloys, offer a promising path towards the development of active optical metasurfaces for the control of the amplitude, phase, and polarization of light. However, for phase-change metasurfaces to be able to provide viable technology for active light control, in situ electrical switching via resistive heaters integral to or embedded in the metasurface itself is highly desirable. In this context, good electrical conductors (metals) with high melting points (i.e., significantly above the melting point of commonly used phase-change alloys) are required. In addition, such metals should ideally have low plasmonic losses, so as to not degrade metasurface optical performance. This essentially limits the choice to a few noble metals, namely, gold and silver, but these tend to diffuse quite readily into phase-change materials (particularly the archetypal Ge2Sb2Te5 alloy used here), and into dielectric resonators such as Si or Ge. In this work, we introduce a novel hybrid dielectric/plasmonic metasurface architecture, where we incorporated a thin Ge2Sb2Te5 layer into the body of a cubic silicon nanoresonator lying on metallic planes that simultaneously acted as high-efficiency reflectors and resistive heaters. Through systematic studies based on changing the configuration of the bottom metal plane between high-melting-point diffusive and low-melting-point nondiffusive metals (Au and Al, respectively), we explicitly show how thermally activated diffusion can catastrophically and irreversibly degrade the optical performance of chalcogenide phase-change metasurface devices, and how such degradation can be successfully overcome at the design stage via the incorporation of ultrathin Si3N4 barrier layers between the gold plane and the hybrid Si/Ge2Sb2Te5 resonators. Our work clarifies the importance of diffusion of noble metals in thermally tunable metasurfaces and how to overcome it, thus helping phase-change-based metasurface technology move a step closer towards the realization of real-world applications.

10.
Opt Express ; 28(11): 16394-16406, 2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32549463

RESUMEN

We propose a reconfigurable and non-volatile Bragg grating in the telecommunication C-band based on the combination of novel low-loss phase-change materials (specifically Ge2Sb2Se4Te1 and Sb2S3) with a silicon nitride platform. The Bragg grating is formed by arrayed cells of phase-change material, whose crystallisation fraction modifies the Bragg wavelength and extinction ratio. These devices could be used in integrated photonic circuits for optical communications applications in smart filters and Bragg mirrors and could also find use in tuneable ring resonators, Mach-Zehnder interferometers or frequency selectors for future laser on chip applications. In the case of Ge2Sb2Se4Te1, crystallisation produces a Bragg resonance shift up to ∼ 15 nm, accompanied with a large amplitude modulation (insertion loss of 22 dB). Using Sb2S3, low losses are presented in both states of the phase change material, obtaining a ∼ 7 nm red-shift in the Bragg wavelength. The gratings are evaluated for two period numbers, 100 and 200 periods. The number of periods determines the bandwidth and extinction ratio of the filters. Increasing the number of periods increases the extinction ratio and reflected power, also narrowing the bandwidth. This results in a trade-off between device size and performance. Finally, we combine both phase-change materials in a single Bragg grating to provide both frequency and amplitude modulation. A defect is introduced in the Sb2S3 Bragg grating, producing a high quality factor resonance (Q ∼ 104) which can be shifted by 7 nm via crystallisation. A GSST cell is then placed in the defect which can modulate the transmission amplitude from low loss to below -16 dB.

11.
Sci Adv ; 5(11): eaaw2687, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31819898

RESUMEN

Modern-day computers rely on electrical signaling for the processing and storage of data, which is bandwidth-limited and power hungry. This fact has long been realized in the communications field, where optical signaling is the norm. However, exploiting optical signaling in computing will require new on-chip devices that work seamlessly in both electrical and optical domains, without the need for repeated electrical-to-optical conversion. Phase-change devices can, in principle, provide such dual electrical-optical operation, but assimilating both functionalities into a single device has so far proved elusive owing to conflicting requirements of size-limited electrical switching and diffraction-limited optical response. Here, we combine plasmonics, photonics, and electronics to deliver an integrated phase-change memory cell that can be electrically or optically switched between binary or multilevel states. Crucially, this device can also be simultaneously read out both optically and electrically, offering a new strategy for merging computing and communications technologies.

12.
Opt Express ; 27(17): 24724-24737, 2019 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-31510357

RESUMEN

Integrated phase-change photonic memory devices offer a novel route to non-volatile storage and computing that can be carried out entirely in the optical domain, obviating the necessity for time and energy consuming opto-electrical conversions. Such memory devices generally consist of integrated waveguide structures onto which are fabricated small phase-change memory cells. Switching these cells between their amorphous and crystalline states modifies significantly the optical transmission through the waveguide, so providing memory, and computing, functionality. To carry out such switching, optical pulses are sent down the waveguide, coupling to the phase-change cell, heating it up, and so switching it between states. While great strides have been made in the development of integrated phase-change photonic devices in recent years, there is always a pressing need for faster switching times, lower energy consumption and a smaller device footprint. In this work, therefore, we propose the use of plasmonic enhancement of the light-matter interaction between the propagating waveguide mode and the phase-change cell as a means to faster, smaller and more energy-efficient devices. In particular, we propose a form of plasmonic dimer nanoantenna of significantly sub-micron size that, in simulations, offers significant improvements in switching speeds and energies. Write/erase speeds in the range 2 to 20 ns and write/erase energies in the range 2 to 15 pJ were predicted, representing improvements of one to two orders of magnitude when compared to conventional device architectures.

13.
Sci Adv ; 5(2): eaau5759, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30793028

RESUMEN

Collocated data processing and storage are the norm in biological computing systems such as the mammalian brain. As our ability to create better hardware improves, new computational paradigms are being explored beyond von Neumann architectures. Integrated photonic circuits are an attractive solution for on-chip computing which can leverage the increased speed and bandwidth potential of the optical domain, and importantly, remove the need for electro-optical conversions. Here we show that we can combine integrated optics with collocated data storage and processing to enable all-photonic in-memory computations. By employing nonvolatile photonic elements based on the phase-change material, Ge2Sb2Te5, we achieve direct scalar and matrix-vector multiplication, featuring a novel single-shot Write/Erase and a drift-free process. The output pulse, carrying the information of the light-matter interaction, is the result of the computation. Our all-optical approach is novel, easy to fabricate and operate, and sets the stage for development of entirely photonic computers.

14.
ACS Appl Mater Interfaces ; 10(51): 44906-44914, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30501199

RESUMEN

Phase-change materials are increasingly being explored for photonics applications, ranging from high-resolution displays to artificial retinas. Surprisingly, our understanding of the underlying mechanism of light-matter interaction in these materials has been limited to photothermal crystallization because of its relevance in applications such as rewritable optical discs. Here, we report a photoconductivity study of nanoscale thin films of phase-change materials. We identify strong photoconductive behavior in phase-change materials, which we show to be a complex interplay of three independent mechanisms: photoconductive, photoinduced crystallization, and photoinduced thermoelectric effects. We find that these effects also congruously contribute to a substantial photovoltaic effect, even in notionally symmetric devices. Notably, we show that device engineering plays a decisive role in determining the dominant mechanism; the contribution of the photothermal effects to the extractable photocurrent can be reduced to <0.4% by varying the electrodes and device geometry. We then show that the contribution of these individual effects to the photoresponse is phase-dependent with the amorphous state being more photoactive than the crystalline state and that a reversible change occurs in the charge transport from thermionic to tunnelling during phase transformation. Finally, we demonstrate photodetectors with an order of magnitude tunability in photodetection responsivity and bandwidth using these materials. Our results provide insights to the photophysics of phase-change materials and highlight their potential in future optoelectronics.

15.
Opt Express ; 26(20): 25567-25581, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30469657

RESUMEN

Perfect absorber type devices are well-suited to many applications, such as solar cells, spatial light modulators, bio-sensors, and highly-sensitive photo-detectors. In such applications, a method for the design and fabrication of devices in a simple and efficient way, while at the same time maintaining design control over the key performance characteristics of resonant frequency, reflection coefficient at resonance and quality factor, would be particularly advantageous. In this work we develop such a method, based on eigenmode analysis and critical coupling theory, and apply it to the design of reconfigurable phase-change metasurface absorber devices. To validate the method, the design and fabrication of a family of absorbers was carried out with a range of 'on-demand' quality factors, all operating at the same resonant frequency and able to be fabricated simply and simultaneously on the same chip. Furthermore, by switching the phase-change layer between its amorphous and crystalline states, we show that our devices can provide an active or reconfigurable functionality.

16.
Adv Mater ; 30(39): e1802953, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30141202

RESUMEN

Wearable technologies are driving current research efforts to self-powered electronics, for which novel high-performance materials such as graphene and low-cost fabrication processes are highly sought.The integration of high-quality graphene films obtained from scalable water processing approaches in emerging applications for flexible and wearable electronics is demonstrated. A novel method for the assembly of shear exfoliated graphene in water, comprising a direct transfer process assisted by evaporation of isopropyl alcohol is developed. It is shown that graphene films can be easily transferred to any target substrate such as paper, flexible polymeric sheets and fibers, glass, and Si substrates. By combining graphene as the electrode and poly(dimethylsiloxane) as the active layer, a flexible and semi-transparent triboelectric nanogenerator (TENG) is demonstrated for harvesting energy. The results constitute a new step toward the realization of energy harvesting devices that could be integrated with a wide range of wearable and flexible technologies, and opens new possibilities for the use of TENGs in many applications such as electronic skin and wearable electronics.


Asunto(s)
Grafito/química , Electrodos , Nanotecnología , Polímeros , Agua
17.
Adv Mater ; 30(32): e1802435, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29940084

RESUMEN

Inspired by the great success of fiber optics in ultrafast data transmission, photonic computing is being extensively studied as an alternative to replace or hybridize electronic computers, which are reaching speed and bandwidth limitations. Mimicking and implementing basic computing elements on photonic devices is a first and essential step toward all-optical computers. Here, an optical pulse-width modulation (PWM) switching of phase-change materials on an integrated waveguide is developed, which allows practical implementation of photonic memories and logic devices. It is established that PWM with low peak power is very effective for recrystallization of phase-change materials, in terms of both energy efficiency and process control. Using this understanding, multilevel photonic memories with complete random accessibility are then implemented. Finally, programmable optical logic devices are demonstrated conceptually and experimentally, with logic "OR" and "NAND" achieved on just a single integrated photonic phase-change cell. This study provides a practical and elegant technique to optically program photonic phase-change devices for computing applications.

18.
Sci Adv ; 3(9): e1700160, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28959725

RESUMEN

The search for new "neuromorphic computing" architectures that mimic the brain's approach to simultaneous processing and storage of information is intense. Because, in real brains, neuronal synapses outnumber neurons by many orders of magnitude, the realization of hardware devices mimicking the functionality of a synapse is a first and essential step in such a search. We report the development of such a hardware synapse, implemented entirely in the optical domain via a photonic integrated-circuit approach. Using purely optical means brings the benefits of ultrafast operation speed, virtually unlimited bandwidth, and no electrical interconnect power losses. Our synapse uses phase-change materials combined with integrated silicon nitride waveguides. Crucially, we can randomly set the synaptic weight simply by varying the number of optical pulses sent down the waveguide, delivering an incredibly simple yet powerful approach that heralds systems with a continuously variable synaptic plasticity resembling the true analog nature of biological synapses.


Asunto(s)
Biomimética , Neuronas/fisiología , Óptica y Fotónica , Sinapsis/fisiología , Biomimética/métodos , Plasticidad Neuronal , Óptica y Fotónica/métodos
19.
Adv Mater ; 29(41)2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28945933

RESUMEN

Atomically thin materials such as graphene are uniquely responsive to charge transfer from adjacent materials, making them ideal charge-transport layers in phototransistor devices. Effective implementation of organic semiconductors as a photoactive layer would open up a multitude of applications in biomimetic circuitry and ultra-broadband imaging but polycrystalline and amorphous thin films have shown inferior performance compared to inorganic semiconductors. Here, the long-range order in rubrene single crystals is utilized to engineer organic-semiconductor-graphene phototransistors surpassing previously reported photogating efficiencies by one order of magnitude. Phototransistors based upon these interfaces are spectrally selective to visible wavelengths and, through photoconductive gain mechanisms, achieve responsivity as large as 107 A W-1 and a detectivity of 9 × 1011 Jones at room temperature. These findings point toward implementing low-cost, flexible materials for amplified imaging at ultralow light levels.

20.
Sci Rep ; 7(1): 9688, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28852162

RESUMEN

We present a viable pathway to the design and characterization of phase-change devices operating in a mixed-mode optical-electrical, or optoelectronic, manner. Such devices have potential applications ranging from novel displays to optically-gated switches to reconfigurable metamaterials-based devices. With this in mind, a purpose-built optoelectronics probe station capable of simultaneous optical-electrical excitation and simultaneous optical-electrical response measurement has been designed and constructed. Two prototype phase-change devices that might exploit simultaneous optical and electrical effects and/or require simultaneous optical and electrical characterisation, namely a mixed-mode cross-bar type structure and a microheater-based structure, have been designed, fabricated and characterized. The microheater-based approach was shown to be capable of successful thermally-induced cycling, between amorphous and crystalline states, of large-area phase-change devices, making it attractive for practicable pixel fabrication in phase-change display applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...