Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 110(2-1): 024405, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39295040

RESUMEN

Living systems are naturally complex and adaptive and offer unique insights into the strategies for achieving and sustaining stochastic homeostasis in different conditions. Here we focus on homeostasis in the context of stochastic growth and division of individual bacterial cells. We take advantage of high-precision long-term dynamical data that have recently been used to extract emergent simplicities and to articulate empirical intra- and intergenerational scaling laws governing these stochastic dynamics. From these data, we identify the core motif in the mechanistic coupling between division and growth, which naturally yields these precise rules, thus also bridging the intra- and intergenerational phenomenologies. By developing and utilizing techniques for solving a broad class of first-passage processes, we derive the exact analytic necessary and sufficient condition for sustaining stochastic intergenerational cell-size homeostasis within this framework. Furthermore, we provide predictions for the precision kinematics of cell-size homeostasis and the shape of the interdivision time distribution, which are compellingly borne out by the high-precision data. Taken together, these results provide insights into the functional architecture of control systems that yield robust yet flexible stochastic homeostasis.


Asunto(s)
Homeostasis , Modelos Biológicos , Procesos Estocásticos , División Celular
2.
Mol Biol Cell ; 35(6): ar78, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38598301

RESUMEN

Microfluidic platforms enable long-term quantification of stochastic behaviors of individual bacterial cells under precisely controlled growth conditions. Yet, quantitative comparisons of physiological parameters and cell behaviors of different microorganisms in different experimental and device modalities is not available due to experiment-specific details affecting cell physiology. To rigorously assess the effects of mechanical confinement, we designed, engineered, and performed side-by-side experiments under otherwise identical conditions in the Mother Machine (with confinement) and the SChemostat (without confinement), using the latter as the ideal comparator. We established a protocol to cultivate a suitably engineered rod-shaped mutant of Caulobacter crescentus in the Mother Machine and benchmarked the differences in stochastic growth and division dynamics with respect to the SChemostat. While the single-cell growth rate distributions are remarkably similar, the mechanically confined cells in the Mother Machine experience a substantial increase in interdivision times. However, we find that the division ratio distribution precisely compensates for this increase, which in turn reflects identical emergent simplicities governing stochastic intergenerational homeostasis of cell sizes across device and experimental configurations, provided the cell sizes are appropriately mean-rescaled in each condition. Our results provide insights into the nature of the robustness of the bacterial growth and division machinery.


Asunto(s)
Caulobacter crescentus , División Celular , Procesos Estocásticos , Caulobacter crescentus/fisiología , Caulobacter crescentus/metabolismo , Caulobacter crescentus/citología , Microfluídica/métodos
3.
Annu Rev Biophys ; 53(1): 193-220, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38346244

RESUMEN

The interior of a living cell is an active, fluctuating, and crowded environment, yet it maintains a high level of coherent organization. This dichotomy is readily apparent in the intracellular transport system of the cell. Membrane-bound compartments called endosomes play a key role in carrying cargo, in conjunction with myriad components including cargo adaptor proteins, membrane sculptors, motor proteins, and the cytoskeleton. These components coordinate to effectively navigate the crowded cell interior and transport cargo to specific intracellular locations, even though the underlying protein interactions and enzymatic reactions exhibit stochastic behavior. A major challenge is to measure, analyze, and understand how, despite the inherent stochasticity of the constituent processes, the collective outcomes show an emergent spatiotemporal order that is precise and robust. This review focuses on this intriguing dichotomy, providing insights into the known mechanisms of noise suppression and noise utilization in intracellular transport processes, and also identifies opportunities for future inquiry.


Asunto(s)
Procesos Estocásticos , Transporte Biológico , Humanos , Modelos Biológicos , Animales , Endosomas/metabolismo , Espacio Intracelular/metabolismo
4.
Nat Commun ; 14(1): 4652, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37532690

RESUMEN

Endosomal maturation is critical for robust and timely cargo transport to specific cellular compartments. The most prominent model of early endosomal maturation involves a phosphoinositide-driven gain or loss of specific proteins on individual endosomes, emphasising an autonomous and stochastic description. However, limitations in fast, volumetric imaging long hindered direct whole cell-level measurements of absolute numbers of maturation events. Here, we use lattice light-sheet imaging and bespoke automated analysis to track individual very early (APPL1-positive) and early (EEA1-positive) endosomes over the entire population, demonstrating that direct inter-endosomal contact drives maturation between these populations. Using fluorescence lifetime, we show that this endosomal interaction is underpinned by asymmetric binding of EEA1 to very early and early endosomes through its N- and C-termini, respectively. In combination with agent-based simulation which supports a 'trigger-and-convert' model, our findings indicate that APPL1- to EEA1-positive maturation is driven not by autonomous events but by heterotypic EEA1-mediated interactions, providing a mechanism for temporal and population-level control of maturation.


Asunto(s)
Vesículas Transportadoras , Proteínas de Transporte Vesicular , Proteínas de Transporte Vesicular/metabolismo , Vesículas Transportadoras/metabolismo , Endosomas/metabolismo
5.
Curr Biol ; 33(2): R61-R63, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36693308

RESUMEN

Stentor coeruleus cells stochastically switch between non-responsive (contracted) and responsive (extended) states. Learning is accomplished via habituation, in which the internal model is updated to reflect the current environment by tuning the transition rates according to the time series properties of mechanical stimuli.


Asunto(s)
Cilióforos , Habituación Psicofisiológica , Ambiente , Aprendizaje
6.
Sci Rep ; 5: 9155, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25778096

RESUMEN

We investigate the intergenerational shape dynamics of single Caulobacter crescentus cells using a novel combination of imaging techniques and theoretical modeling. We determine the dynamics of cell pole-to-pole lengths, cross-sectional widths, and medial curvatures from high accuracy measurements of cell contours. Moreover, these shape parameters are determined for over 250 cells across approximately 10000 total generations, which affords high statistical precision. Our data and model show that constriction is initiated early in the cell cycle and that its dynamics are controlled by the time scale of exponential longitudinal growth. Based on our extensive and detailed growth and contour data, we develop a minimal mechanical model that quantitatively accounts for the cell shape dynamics and suggests that the asymmetric location of the division plane reflects the distinct mechanical properties of the stalked and swarmer poles. Furthermore, we find that the asymmetry in the division plane location is inherited from the previous generation. We interpret these results in terms of the current molecular understanding of shape, growth, and division of C. crescentus.


Asunto(s)
Caulobacter crescentus/citología , Caulobacter crescentus/fisiología , Algoritmos , Microscopía de Contraste de Fase , Modelos Teóricos
7.
Proc Natl Acad Sci U S A ; 111(45): 15912-7, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-25349411

RESUMEN

Uncovering the quantitative laws that govern the growth and division of single cells remains a major challenge. Using a unique combination of technologies that yields unprecedented statistical precision, we find that the sizes of individual Caulobacter crescentus cells increase exponentially in time. We also establish that they divide upon reaching a critical multiple (≈ 1.8) of their initial sizes, rather than an absolute size. We show that when the temperature is varied, the growth and division timescales scale proportionally with each other over the physiological temperature range. Strikingly, the cell-size and division-time distributions can both be rescaled by their mean values such that the condition-specific distributions collapse to universal curves. We account for these observations with a minimal stochastic model that is based on an autocatalytic cycle. It predicts the scalings, as well as specific functional forms for the universal curves. Our experimental and theoretical analysis reveals a simple physical principle governing these complex biological processes: a single temperature-dependent scale of cellular time governs the stochastic dynamics of growth and division in balanced growth conditions.


Asunto(s)
Caulobacter crescentus/crecimiento & desarrollo , División Celular/fisiología , Modelos Biológicos , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA