Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37421071

RESUMEN

The performance of rolling parameters and annealing processes on the microstructure and properties of Cu strip were studied by High Precision Rolling Mill, FIB, SEM, Strength Tester, and Resistivity Tester. The results show that with the increase of the reduction rate, coarse grains in the bonding Cu strip are gradually broken and refined, and the grains are flattened when the reduction rate is 80%. The tensile strength increased from 248.0 MPa to 425.5 MPa, while the elongation decreased from 8.50% to 0.91%. The growth of lattice defects and grain boundary density results in an approximately linear increase in resistivity. With the increase of annealing temperature to 400 °C, the Cu strip recovers, and the strength decreased from 456.66 MPa to 220.36 MPa while the elongation rose from 1.09% to 24.73%. The tensile strength and elongation decreased to 192.2 MPa and 20.68%, respectively, when the annealing temperature was 550 °C. The trend of yield strength of the Cu strip was basically the same as that of tensile strength. The resistivity of the Cu strip decreased rapidly during a 200~300 °C annealing temperature, then the trend slowed, and the minimum resistivity was 3.60 × 10-8 Ω·m. The optimum tension range annealing was 6-8 g; less or more than that will affect the quality of the Cu strip.

2.
Micromachines (Basel) ; 14(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37241653

RESUMEN

In light of the fact that tungsten wire is gradually replacing high-carbon steel wire as a diamond cutting line, it is particularly important to study tungsten alloy wire with better strength and performance. According to this paper, in addition to various technological factors (powder preparation, press forming, sintering, rolling, rotary forging, annealing, wire drawing, etc.), the main factors affecting the properties of the tungsten alloy wire are the composition of the tungsten alloy, the shape and size of the powder, etc. Combined with the research results in recent years, this paper summarizes the effects of changing the composition of tungsten materials and improving the processing technology on the microstructure and mechanical properties of tungsten and its alloys and points out the development direction and trend of tungsten and its alloy wires in the future.

3.
Micromachines (Basel) ; 12(8)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34442560

RESUMEN

The performance of Ag-8.5Au-3.5Pd alloy wire after cold deformation and annealing were analyzed by SEM (scanning electron microscope), strength tester and resistivity tester. The processing process and performance change characteristics of Ag-8.5Au-3.5Pd alloy wire were studied. The results show that alloy wire grains gradually form a fibrous structure along with the increase in deformation. The strength of the wire increases with the increase in deformation rate, but the increase trend becomes flat once the deformation rate is higher than 92.78%; the resistivity of Ag-8.5Au-3.5Pd alloy wire decreases with the increase in annealing temperature, reaching minimum (2.395 × 10-8 Ω·m) when the annealing temperature is 500 °C; the strength of Ag-8.5Au-3.5Pd alloy wire decreases with the increase in annealing temperature. When the annealing temperature is 500 °C, the strength and elongation of the φ0.2070 mm Ag-8.5Au-3.5Pd alloy wire are 287 MPa and 25.7%, respectively; the fracture force and elongation of φ0.020 mm Ag-8.5Au-3.5Pd alloy wire are 0.0876 N and 14.8%, respectively. When the annealing temperature is 550 °C, the metal grains begin to grow and the mechanical performance decrease; the φ0.020 mm Ag-8.5Au-3.5Pd alloy wire have good surface quality when the tension range is 2.5-3.0 g.

4.
Micromachines (Basel) ; 12(1)2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383644

RESUMEN

The effects of the geometry parameters of a ceramic cleaver on the morphology of ball and second bonded points were studied using an automatic wire bonder, push pull tester, scanning electron microscope, ceramic capillary with different geometric parameters and φ25.4 µmAg-5Au bonding alloy wire, etc. The result shows that when the inner hole diameter (IHD) of the ceramic capillary is 1.3 times the diameter of the alloy wire (33 µm), the neck morphology of the ball bonded point (first bonded point) meet the requirements. The neck of the ball bonded point appeared to fracture when the IHD is 26 µm; The neck of the ball bonded point appeared as an irregular shape when the IHD is 41 µm. When the inner cutting angle diameter (ICAD) is 64 µm, the size of the mashed ball diameter (MBD) is qualified. When the ICAD is 51 µm, the MBD is too large and mashed ball overflows the pad. When the ICAD is 76 µm, the ball bonded point is too high. When the inner cutting bevel angle (ICBA) is 100°, the MBD size meets the requirements of the pad. When the ICBA was reduced to 70°, the ball bonded point is eccentric. When the ICBA was increased to 120°, the MBD is too large and is connected to the adjacent pad contact. The size of the fish tail of the second bonded point (second bonded point) changed in the same direction as the tip diameter (TD) changes. When the TD is 178 µm, the fish tail shape is regular and symmetrical. When the working face angle (WFA) is 8° and the outer circular radius (OCR) is equal to the diameter of the alloy wire (25.4 µm), the fish tail shape is regular. When the WFA is higher than 11° or the OCR is higher than 30 µm, the fish tail will appear as virtual welding, and when the WFA is less than 4°, the fish tail of the second bonded point will break due to thinning. When the OCR is less than 20 µm, the fish tail of the second bonded point is too long and causes a short circuit.

5.
World J Gastroenterol ; 10(23): 3409-13, 2004 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-15526357

RESUMEN

AIM: In recent years, studies have suggested that Epstein-Barr virus (EBV) is associated with HCC. The present study was to determine the prevalence of EBV in HCC patients, and whether EBV acted synergistically with hepatitis viruses in HCC carcinogenesis. METHODS: Liver tissue 115 HCC patients and 26 non-carcinoma patients were studied. Polymerase chain reaction (PCR) was performed to detect EBV BamHI W DNA, EBV LMP1 DNA, HBV X DNA, and HBV S DNA. Reverse transcription PCR (RT-PCR) was performed to detect HCV RNA and HDV RNA. Immunohistochemistry was performed to detect LMP1, HBsAg, HBcAg and HCV. The positive ratios were compared between HCC group and control group by chi2 test. RESULTS: Totally, 78 HCC samples whose beta-globulin DNA was positively detected by amplified PCR were selected. PCR was performed in all cases for EBV DNA and HBV DNA. RT-PCR was performed in 18 cases for HCV RNA and HDV RNA. EBV BamHI W and EBV LMP1 were positive in 18 and 6 cases, respectively. HBV X gene and HBV S gene were positive in 42 and 27 cases respectively. HCV was positive in one of the 18 cases, and none was positive for HDV. The positive rates were 28.2% (22 of 78) for EBV DNA (BamHI W and/or LMP1) and 56.4% (44 of 78) for HBV DNA (X gene and/or S gene) respectively. In addition, 12 cases were positive for both EBV DNA and HBV DNA. Among the 26 cases in the control group, 2 cases were positive for EBV BamHI W, 4 positive for HBV X gene and 3 positive for HBV S gene. The positive rates were 8.0% (2 of 26) and 23.1% (6 of 26), respectively, for EBV DNA and HBV DNA. The result of DNA sequencing of BamHI W was 100% homologous with the corresponding sequence of B95-8. There was significant difference in EBV infection rate between HCC patients and controls (chi2 = 4.622, P<0.05). The difference in HBV infection rate was also significant (chi2 = 8.681, P<0.05). However, there was no obvious correlation between HBV and EBV in HCC patients (chi2 = 0.835, P>0.05). LMP1, HBV (HBsAg, HBcAg) and HCV were detected positively in 25, 45 and 6 of 78 cases of HCC tissues respectively. In the 26 control cases, the corresponding positive cases were 2, 4 and 0. The difference in EBV infection rate between HCC patients and control cases was statistically significant (chi2 = 6.02, P<0.05). The difference in HBV infection rate was also statistically significant (chi2 = 10.03, P<0.05). In the 25 cases with positive LMP1 expression, 6 were in the nuclei of tumor cells, 9 in the cytoplasm of tumor cells and 10 in mesenchymal lymphocyte cytoplasm. CONCLUSION: The existence of EBV infection in HCC tissues suggests that EBV may be involved in the hepatocellular carcinogenesis in China. HBV infection may be a major cause of HCC. There is no correlation between EBV and HBV in the development of HCC. The prevalence of HCV infection is low in our area, and HDV appears not to play a direct role in hepatocellular carcinogenesis.


Asunto(s)
Carcinoma Hepatocelular/epidemiología , Carcinoma Hepatocelular/virología , Infecciones por Virus de Epstein-Barr/epidemiología , Herpesvirus Humano 4/aislamiento & purificación , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/virología , Adulto , Anciano , ADN Viral/análisis , Femenino , Herpesvirus Humano 4/genética , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Prevalencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA