Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Virus Res ; 345: 199400, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763300

RESUMEN

PURPOSE: Previous studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have focused on factors that influence the achievement of negative conversion of viral RNA. This study aimed to investigate the effects of the genetic mutations in different SARS-CoV-2 strains on the negative conversion time (NCT) among imported cases in Hangzhou, Zhejiang Province, China, in order to provide valuable insights for developing targeted epidemic prevention guidelines. METHODS: This retrospective study involved 146 imported SARS-CoV-2 cases in Hangzhou from 8 April 2021 to 11 June 2022. We compared the SARS-CoV-2-specific indicators, clinical indexes, and NCT among the wild-type (WT), Delta, and Omicron groups. Spearman correlation analysis was used to identify the correlations of NCT with mutation types/frequencies. RESULTS: The mean age of the imported cases was 35.3 (SD: 12.3) years, with 71.92 % males and 28.08 % females. The mean cycle threshold (Ct) values of open reading frame 1ab (ORF1ab) and nucleocapsid (N) RNA were 25.17 (SD: 6.44) and 23.4 (SD: 6.76), respectively. The mutations of SARS-CoV-2 strains were mainly located in N, membrane (M), spike (S), ORF1a, ORF1b, ORF3a, ORF6, and ORF9b genes among the WT, Delta, and Omicron groups. NCT was significantly prolonged in the WT and Delta groups compared to the Omicron group. T lymphocyte, white blood cell, eosinophil, and basophil counts were dramatically higher in the WT group than the Delta group. White blood cell, red blood cell, and basophil counts were significantly lower in the Delta group than the Omicron group. Spearman correlation analysis revealed a significant correlation between the NCT of viral RNA and mutation types of viral genes of WT and Omicron strains. Additionally, NCT was markedly negatively correlated with the frequencies of five mutations in Omicron strains (ORF1b:P1223L, ORF1b:R1315C, ORF1b:T2163I, ORF3a:T223I, and ORF6:D61L). CONCLUSIONS: This study indicates that five mutations in Omicron strains (ORF1b:P1223L/R1315C/T2163I, ORF3a:T223I and ORF6:D61L) shortened NCT in imported SARS-CoV-2 cases.

2.
Water Res ; 256: 121641, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38643643

RESUMEN

Extracellular polymeric substances (EPS) play significant roles in the formation, function, and interactions of microalgal-bacteria consortia. Understanding the key roles of EPS depends on reliable extraction and quantification methods, but differentiating of EPS from microalgae versus bacteria is challenging. In this work, cation exchange resin (CER) and thermal treatments were applied for total EPS extraction from microalgal-bacteria mixed culture (MBMC), flow cytometry combined with SYTOX Green staining was applied to evaluate cell disruption during EPS extraction, and auto-fluorescence-based cell sorting (AFCS) was used to separate microalgae and bacteria in the MBMC. Thermal extraction achieved much higher EPS yield than CER, but higher temperature and longer time reduced cell activity and disrupted the cells. The highest EPS yield with minimal loss of cell activity and cell disruption was achieved using thermal extraction at 55℃ for 30 min, and this protocol gave good results for MBMC with different microalgae:bacteria (M:B) mass ratios. AFCS combined with thermal treatment achieved the most-efficient biomass differentiation and low EPS loss (<4.5 %) for the entire range of M:B ratios. EPS concentrations in bacteria were larger than in microalgae: 42.8 ± 0.4 mg COD/g TSS versus 9.19 ± 0.38 mg COD/g TSS. These findings document sensitive and accurate methods to extract and quantify EPS from microalgal-bacteria aggregates.


Asunto(s)
Bacterias , Matriz Extracelular de Sustancias Poliméricas , Microalgas , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Bacterias/metabolismo , Biomasa , Citometría de Flujo
3.
Front Med (Lausanne) ; 11: 1362588, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38523908

RESUMEN

Background: Accurately differentiating between ovarian endometrioma and ovarian dermoid cyst is of clinical significance. However, the ultrasound appearance of these two diseases is variable, occasionally causing confusion and overlap with each other. This study aimed to develop a diagnostic classification model based on ultrasound radiomics to intelligently distinguish and diagnose the two diseases. Methods: We collected ovarian ultrasound images from participants diagnosed as patients with ovarian endometrioma or ovarian dermoid cyst. Feature extraction and selection were performed using the Mann-Whitney U-test, Spearman correlation analysis, and the least absolute shrinkage and selection operator (LASSO) regression. We then input the final features into the machine learning classifiers for model construction. A nomogram was established by combining the radiomic signature and clinical signature. Results: A total of 407 participants with 407 lesions were included and categorized into the ovarian endometriomas group (n = 200) and the dermoid cyst group (n = 207). In the test cohort, Logistic Regression (LR) achieved the highest area under curve (AUC) value (0.981, 95% CI: 0.963-1.000), the highest accuracy (94.8%), and the highest sensitivity (95.5%), while LightGBM achieved the highest specificity (97.1%). A nomogram incorporating both clinical features and radiomic features achieved the highest level of performance (AUC: 0.987, 95% CI: 0.967-1.000, accuracy: 95.1%, sensitivity: 88.0%, specificity: 100.0%, PPV: 100.0%, NPV: 88.0%, precision: 93.6%). No statistical difference in diagnostic performance was observed between the radiomic model and the nomogram (P > 0.05). The diagnostic indexes of radiomic model were comparable to that of senior radiologists and superior to that of junior radiologist. The diagnostic performance of junior radiologists significantly improved with the assistance of the model. Conclusion: This ultrasound radiomics-based model demonstrated superior diagnostic performance compared to those of junior radiologists and comparable diagnostic performance to those of senior radiologists, and it has the potential to enhance the diagnostic performance of junior radiologists.

4.
Microbiol Res ; 282: 127631, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38330818

RESUMEN

Global emergence of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium is a continuing challenge for modern healthcare. However, the knowledge, regarding the epidemiology of salmonellosis caused by the monophasic variant S. 4,[5],12:i:- in hospitalized patients, is limited in China. To bridge this gap, we carried out a retrospective study to determine the antimicrobial resistance, trends, and risk factors of S. Typhimurium and S. 4,[5],12:i:- (n = 329) recovered from patients in Zhejiang province between 2011 and 2019. The results showed that 90.57% (298/329) of the isolates were MDR; among them, 48.94% (161/329) and 12.46% (41/329) were phenotypically resistant to cephalosporins and fluoroquinolones, respectively, which are the drugs of choice used to treat salmonellosis in clinics. Additionally, we observed a higher incidence of infections among the young population (<5 years old). Notably, the higher prevalence of ST34 (sequence type 34) isolates, especially after 2014, with MDR (57.05%, 170/298) phenotype, and incidence of ST34 isolates co-harbouring mcr-1 (mobile colistin resistance gene) and blaCTX-M-14 (ß-lactamase gene) suggest an association between STs and drug resistance. Together, the increasing prevalence of MDR ST34 calls for enhanced monitoring strategies to mitigate the spread and dissemination of MDR clones of S. Typhimurium and S. 4,[5],12:i-. Our study provides improved knowledge about non-typhoid Salmonella (NTS) infections, which could help in the effective recommendation of antimicrobials in hospitalized patients.


Asunto(s)
Intoxicación Alimentaria por Salmonella , Infecciones por Salmonella , Humanos , Preescolar , Salmonella typhimurium/genética , Antibacterianos/farmacología , Serogrupo , Estudios Retrospectivos , Farmacorresistencia Bacteriana/genética , Infecciones por Salmonella/epidemiología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética
5.
Small ; : e2308335, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38420895

RESUMEN

Tumor-derived exosomes (TDEs) induced extracellular microenvironment has recently been validated to be critical for tumor progression and metastasis, however, remodeling it for oncotherapy still remains a major challenge due to difficulty in regulation of TDEs secretion. Herein, the supramolecular chiral nanofibers, composed of L/D -phenylalanine derivates (L/D-Phe) and linear hyaluronic acid (HA), are successfully employed to construct TDEs induced anti-tumor extracellular microenvironment. The left-handed L-Phe @HA nanofibers significantly inhibit TDEs secretion into extracellular microenvironment, which results in suppression of tumor proliferation and metastasis in vitro and vivo. Biological assays and theoretical modeling reveal that these results are mainly attributed to strong adsorption of the key exosomes transporters (Ras-related protein Rab-27A and synaptosome-associated protein 23) on left-handed L-Phe @HA nanofibers via enhanced stereoselective interaction, leading to degradation and phosphorylated dropping of exosomes transporters. Subsequently, transfer function of exosomes transporters is limited, which causes remarkable inhibition of TDEs secretion. These findings provide a promising novel insight of chiral functional materials to establish an anti-tumor extracellular microenvironment via regulation of TDEs secretion.

6.
Clin Oral Investig ; 28(2): 130, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305810

RESUMEN

OBJECTIVES: This study conducts a systematic bibliometric analysis of tongue cancer publications to identify key topics, hotspots, and research distribution. METHODS: We analyzed tongue cancer publications in the Web of Science core collection database, assessing their quantity and quality. We investigated contributors, including countries, affiliations, journals, authors, and categories, within collaborative networks. Additionally, we synthesized key research findings using various analytical techniques, such as alluvial flow, burstness analysis, cluster analysis, co-occurrence network of associations, and network layer overlay. RESULTS: From 2000 to 2022, this bibliometric study covers 2205 articles and reviews across 617 journals, involving 72 countries, 2233 institutions, and 11,266 authors. It shows consistent growth, particularly in 2016. Key contributors include China (499 publications), Karolinska Institute (84 publications), Oral Oncology (144 publications), and Tuula Salo (47 publications). Other notable contributors are the USA (16,747 citations), the National Cancer Institute (NCI) (2597 citations), and the Memorial Sloan-Kettering Cancer Center (MSK) (2231 citations). Additionally, there are significant teams led by Tuula Salo and Dalianis. We have identified six primary clusters: #0 apoptosis, #1 depth of invasion, #2 radiotherapy, #3 hpv, #4 tongue cancer, #5 oral cancer. The top ten highly cited documents primarily pertain to epidemiology, prognostic indicators in early-stage oral tongue cancer, and HPV. Additionally, we observed 16 reference clusters, with depth of invasion (#3), young patients (#4), and tumor budding (#6) gaining prominence since 2012, indicating sustained research interests. CONCLUSIONS: This analysis emphasizes the increasing scholarly interest in tongue cancer research. The bibliometric evaluation highlights pivotal recent research themes such as HPV, depth of invasion, tumor budding, and surgical margins. CLINICAL RELEVANCE: The bibliometric analysis highlights the key topics and studies which have shaped the understanding and management of tongue cancer.


Asunto(s)
Neoplasias de la Boca , Infecciones por Papillomavirus , Neoplasias de la Lengua , Humanos , Neoplasias de la Lengua/terapia , Lengua , Bibliometría
7.
Adv Sci (Weinh) ; 11(5): e2303495, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38037850

RESUMEN

Sodium aescinate (SA) shows great potential for treating lymphedema since it can regulate the expression of cytokines in M1 macrophages, however, it is commonly administered intravenously in clinical practice and often accompanied by severe toxic side effects and short metabolic cycles. Herein, SA-loaded chiral supramolecular hydrogels are prepared to prove the curative effects of SA on lymphedema and enhance its safety and transdermal transmission efficiency. In vitro studies demonstrate that SA- loaded chiral supramolecular hydrogels can modulate local immune responses by inhibiting M1 macrophage polarization. Typically, these chiral hydrogels can significantly increase the permeability of SA with good biocompatibility due to the high enantioselectivity between chiral gelators and stratum corneum and L-type hydrogels are found to have preferable drug penetration over D-type hydrogels. In vivo studies show that topical delivery of SA via chiral hydrogels results in dramatic therapeutic effects on lymphedema. Specifically, it can downregulate the level of inflammatory cytokines, reduce the development of fibrosis, and promote the regeneration of lymphatic vessels. This study initiates the use of SA for lymphedema treatment and for the creation of an effective chiral biological platform for improved topical administration.


Asunto(s)
Hidrogeles , Macrófagos , Saponinas , Triterpenos , Administración Cutánea , Citocinas
8.
Environ Manage ; 73(4): 769-776, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37940723

RESUMEN

Landfill cover soils play an important role in mitigating landfill methane (CH4) emissions. Incorporating biochar into the soil has proven effective in reducing CH4 emissions. However, the role of hydrophobic biochar in this context remains underexplored. This study investigated the CH4 removal efficiency of a biochar-modified landfill soil cover column (RB) and hydrophobic biochar-modified landfill soil cover column (RH) under varying CH4 influx gas concentrations (25 and 35%), simulated CH4 inflow rates (10, 15, and 20 ml/min), and temperatures (20, 25, 30, 35, and 40 °C). RH consistently outperformed RB in terms of CH4 removal efficiency under these experimental conditions. The optimal conditions for CH4 degradation by both RB and RH were observed at a CH4 influx gas concentration of 35%, a simulated CH4 inflow rate of 10 ml/min, and a temperature of ~30 °C. RH achieved a CH4 removal rate of up to 99.96%. In summary, the addition of hydrophobic biochar enhanced the air permeability and hydrophobicity of landfill cover soils, providing a promising alternative to conventional cover soils for reducing CH4 emissions from landfills.


Asunto(s)
Metano , Eliminación de Residuos , Suelo/química , Carbón Orgánico/química , Instalaciones de Eliminación de Residuos , Oxidación-Reducción , Microbiología del Suelo
9.
Talanta ; 270: 125542, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109810

RESUMEN

The rational development of efficient nanozymes for the colorimetric detection of targets is still challenging. Herein, Prussian blue analogues of Ni-Co-MoS2 nano boxes were fabricated for colorimetric detection of glyphosate and copper ions owing to its peroxidase like activity. At the sensing system, the Ni-Co-MoS2 nano boxes display high peroxidase activity, which could catalytically oxidize the colourless TMB to blue colour oxTMB. In presence of glyphosate in this sensing system the blue colour is diminished, ascribed to the inhibit the catalytic activity of Ni-Co-MoS2 nano boxes. Concurrently, the addition of copper ion, which result in blue colour was reappear due to the generation of glyphosate-copper complex formation. The Ni-Co-MoS2 nano boxes based colorimetric sensing platform was developed to sensitive detection of glyphosate and copper ions with low detection limit of 3 nM for glyphosate and 3.8 nM for copper. This method also displays satisfactory outcomes from real samples analysis and its good accuracy. Therefore, this work provides a great potential for rapid detection of the targets from the environments.


Asunto(s)
Glifosato , Peroxidasa , Peroxidasa/metabolismo , Cobre , Molibdeno , Oxidación-Reducción , Peroxidasas , Ferrocianuros , Colorantes , Colorimetría/métodos , Peróxido de Hidrógeno/análisis
10.
Environ Sci Technol ; 58(1): 534-544, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38108291

RESUMEN

A symbiotic microalgal-bacterial biofilm can enable efficient carbon (C) and nitrogen (N) removal during aeration-free wastewater treatment. However, the contributions of microalgae and bacteria to C and N removal remain unexplored. Here, we developed a baffled oxygenic microalgal-bacterial biofilm reactor (MBBfR) for the nonaerated treatment of greywater. A hydraulic retention time (HRT) of 6 h gave the highest biomass concentration and biofilm thickness as well as the maximum removal of chemical oxygen demand (94.8%), linear alkylbenzenesulfonates (LAS, 99.7%), and total nitrogen (97.4%). An HRT of 4 h caused a decline in all of the performance metrics due to LAS biotoxicity. Most of C (92.6%) and N (95.7%) removals were ultimately associated with newly synthesized biomass, with only minor fractions transformed into CO2 (2.2%) and N2 (1.7%) on the function of multifarious-related enzymes in the symbiotic biofilm. Specifically, microalgae photosynthesis contributed to the removal of C and N at 75.3 and 79.0%, respectively, which accounted for 17.3% (C) and 16.7% (N) by bacteria assimilation. Oxygen produced by microalgae favored the efficient organics mineralization and CO2 supply by bacteria. The symbiotic biofilm system achieved stable and efficient removal of C and N during greywater treatment, thus providing a novel technology to achieve low-energy-input wastewater treatment, reuse, and resource recovery.


Asunto(s)
Microalgas , Aguas Residuales , Eliminación de Residuos Líquidos , Microalgas/metabolismo , Oxígeno , Dióxido de Carbono , Reactores Biológicos/microbiología , Bacterias/metabolismo , Biopelículas , Nitrógeno/análisis , Nitrógeno/metabolismo , Biomasa , Redes y Vías Metabólicas
11.
Anal Chim Acta ; 1283: 341947, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977777

RESUMEN

Tetrahedral DNA nanostructures (TDNs) are widely used in the development of electrochemical biosensors due to their structural stability, programmability, and strong interfacial orderliness. However, the complex modifications on the electrode and the single vertex target recognition of the TDNs limit their applications in electrochemical biosensing. Herein, we developed a universal detection system based on a novel polyadenine-based tetrahedral DNA nanostructure (ATDN) using Aflatoxin B1 (AFB1) as the model target for analysis. In the absence of target AFB1, the signal probes (SP) modified with ferrocene would be anchored by five aptamers on ATDN. The target capture by aptamers led to a release of SP from the electrode surface, resulting in a significant reduction of the electrochemical signal. This new nanostructure was not only dispensed with multi-step electrode modifications and strong mechanical rigidity but also had five modification sites which enhanced the detection sensitivity for the target. As a result, this biosensor shows good analytical performance in the linear range of 1 fg mL-1 to 1 ng mL-1, exhibiting a low detection limit of 0.33 fg mL-1. Satisfactory accuracy has also been demonstrated through good recoveries (95.2%-98.9%). The proposed new tetrahedral DNA nanostructure can provide a more rapid and sensitive alternative to previous electrochemical sensors based on the conventional TDN. Since DNA sequences can be designed flexibly, the sensing platform in this strategy can be extended to detect various targets in different fields.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanoestructuras , Aflatoxina B1/análisis , ADN/química , Poli A , Nanoestructuras/química , Oligonucleótidos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección , Aptámeros de Nucleótidos/química
12.
mBio ; 14(5): e0133323, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800953

RESUMEN

IMPORTANCE: Typhoid fever is a life-threatening disease caused by Salmonella enterica serovar Typhi, resulting in a significant disease burden across developing countries. Historically, China was very much close to the global epicenter of typhoid, but the role of typhoid transmission within China and among epicenter remains overlooked in previous investigations. By using newly produced genomics on a national scale, we clarify the complex local and global transmission history of such a notorious disease agent in China spanning the most recent five decades, which largely undermines the global public health network.


Asunto(s)
Fiebre Tifoidea , Humanos , Fiebre Tifoidea/epidemiología , Salmonella typhi/genética , Genómica , China/epidemiología , Salud Pública
13.
Water Res ; 244: 120461, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37639992

RESUMEN

Non-aeration microalgae-bacteria biofilm has attracted increasing interest for its application in low cost wastewater treatment. However, it is unclear the quantified biofilm characteristics dynamics and how biofilm bioactivity affects performance and nitrogen metabolisms during wastewater treatment. In this work, a push-flow microalgae-bacteria biofilm reactor (PF-MBBfR) was developed for aeration-free greywater treatment. Comparatively, organic loading at 1.27 ± 0.10 kg COD/(m3⋅d) gave the highest biofilm concentration, density, specific oxygen generation (SOGR) and consumption rates (SOCR), and pollutants removal rates. Contributed to low residual linear alkylbenzene sulfonates and bioactivity, reactor downstream showed low bacteria and protein concentrations and SOCR (12.8 mg O2/g TSS·h), but high microalgae, carbohydrate, biofilm density, SOGR (49.4 mg O2/g TSS·h) and pollutants removal rates. Dissolved organic nitrogen (DON) showed higher molecular weight, CHONS and fraction with 4 atoms of N in reactor upstream. Most of nitrogen was fixed to newly synthesized biomass during assimilation process by related functional enzymes, minor contributed to denitrification due to low N2 emission. High nitrogen assimilation by microalgae showed high SOGR, which favored efficient multiple pollutants removal and reduced DON emission. Our findings favor the practical application of PF-MBBfR based on biofilm bioactivity, enhancing efficiency and reducing DON emission for low- energy-input wastewater treatment.


Asunto(s)
Contaminantes Ambientales , Microalgas , Bacterias , Biopelículas , Nitrógeno , Oxígeno
14.
Chemosphere ; 338: 139421, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37429380

RESUMEN

Microbial metabolic activities in rhizosphere soil play a critical role in plant nutrient utilization and metal availability. However, its specific characteristics and influence on endophyte assisted phytoremediation remains unclear. In this study, an endophyte strain Bacillus paramycoides (B. paramycoides) was inoculated in the rhizosphere of Phytolacca acinosa (P. acinosa), and microbial metabolic characteristics of rhizosphere soils were analyzed using Biolog system to investigate how they influence phytoremediation performance of different types of cadmium contaminated soil. The results indicated that endophyte B. paramycoides inoculation enhanced bioavailable Cd percentage by 9-32%, resulting in the increased Cd uptake (32-40%) by P. acinosa. With endophyte inoculation, the utilization of carbon sources was significantly promoted by 4-43% and the microbial metabolic functional diversity increased by 0.4-36.8%. Especially, B. paramycoides enhanced the utilization of recalcitrant substrates carboxyl acids, phenolic compounds and polymers by 48.3-225.6%, 42.4-65.8% and 15.6-25.1%, respectively. Further, the microbial metabolic activities were significant correlated with rhizosphere soil microecology properties and impact phytoremediation performance. This study provided new insight into the microbial processes during endophyte assisted phytoremediation.


Asunto(s)
Cadmio , Contaminantes del Suelo , Cadmio/análisis , Biodegradación Ambiental , Rizosfera , Endófitos/metabolismo , Contaminantes del Suelo/análisis , Raíces de Plantas/metabolismo , Suelo/química
15.
J Mol Endocrinol ; 71(1)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37314245

RESUMEN

Liver transthyretin (TTR) synthesis and release are exacerbated in insulin-resistant states but are decreased by exercise training, in relation to the insulin-sensitizing effects of exercise. We hypothesized that TTR knockdown (TTR-KD) may mimic this exercise-induced metabolic improvement and skeletal muscle remodeling. Adeno-associated virus-mediated TTR-KD and control mice were trained for 8 weeks on treadmills. Their metabolism status and exercise capacity were investigated and then compared with sedentary controls. After treadmill training, the mice showed improved glucose and insulin tolerance, hepatic steatosis, and exercise endurance. Sedentary TTR-KD mice displayed metabolic improvements comparable to the improvements in trained mice. Both exercise training and TTR-KD promoted the oxidative myofiber compositions of MyHC I and MyHC IIa in the quadriceps and gastrocnemius skeletal muscles. Furthermore, training and TTR-KD had an additive effect on running performance, accompanied by substantial increases in oxidative myofiber composition, Ca2+-dependent Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, and the downstream expression of PGC1α as well as the unfolded protein response (UPR) segment of PERK-p-eIF2a pathway activity. Consistent with these findings, electrical pulse stimulation of an in vitro model of chronic exercise (with differentiated C2C12 myoblasts) showed that exogenous TTR protein was internalized and localized in the endoplasmic reticulum, where it disrupted Ca2+ dynamics; this led to decreases in intracellular Ca2+ concentration and downstream pathway activity. TTR-KD may function as an exercise/Ca2+-dependent CaMKII-PGC1α-UPR regulator that upregulates the oxidative myofiber composition of fast-type muscles; it appears to mimic the effect of exercise training on insulin sensitivity-related metabolic improvement and endurance capacity.


Asunto(s)
Músculo Esquelético , Condicionamiento Físico Animal , Resistencia Física , Prealbúmina , Prealbúmina/genética , Prealbúmina/metabolismo , Animales , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Respuesta de Proteína Desplegada , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL
16.
J Transl Med ; 21(1): 277, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095548

RESUMEN

BACKGROUND: Icariin (ICA), an active ingredient extracted from Epimedium species, has shown promising results in the treatment of Alzheimer's disease (AD), although its potential therapeutic mechanism remains largely unknown. This study aimed to investigate the therapeutic effects and the underlying mechanisms of ICA on AD by an integrated analysis of gut microbiota, metabolomics, and network pharmacology (NP). METHODS: The cognitive impairment of mice was measured using the Morris Water Maze test and the pathological changes were assessed using hematoxylin and eosin staining. 16S rRNA sequencing and multi-metabolomics were performed to analyze the alterations in the gut microbiota and fecal/serum metabolism. Meanwhile, NP was used to determine the putative molecular regulation mechanism of ICA in AD treatment. RESULTS: Our results revealed that ICA intervention significantly improved cognitive dysfunction in APP/PS1 mice and typical AD pathologies in the hippocampus of the APP/PS1 mice. Moreover, the gut microbiota analysis showed that ICA administration reversed AD-induced gut microbiota dysbiosis in APP/PS1 mice by elevating the abundance of Akkermansia and reducing the abundance of Alistipe. Furthermore, the metabolomic analysis revealed that ICA reversed the AD-induced metabolic disorder via regulating the glycerophospholipid and sphingolipid metabolism, and correlation analysis revealed that glycerophospholipid and sphingolipid were closely related to Alistipe and Akkermansia. Moreover, NP indicated that ICA might regulate the sphingolipid signaling pathway via the PRKCA/TNF/TP53/AKT1/RELA/NFKB1 axis for the treatment of AD. CONCLUSION: These findings indicated that ICA may serve as a promising therapeutic approach for AD and that the ICA-mediated protective effects were associated with the amelioration of microbiota disturbance and metabolic disorder.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Ratones , Animales , Farmacología en Red , ARN Ribosómico 16S , Ratones Transgénicos
17.
Chemosphere ; 331: 138774, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37100251

RESUMEN

Accumulation and transmission of antibiotic resistance genes (ARGs) in greywater treatment systems present risks for its reuse. In this study, a gravity flow self-supplying oxygen (O2) bio-enhanced granular activated carbon dynamic biofilm reactor (BhGAC-DBfR) was developed to treat greywater. Maximum removal efficiencies were achieved at saturated/unsaturated ratios (RSt/Ust) of 1:1.1 for chemical oxygen demand (97.6 ± 1.5%), linear alkylbenzene sulfonates (LAS) (99.2 ± 0.5%), NH4+-N (99.3 ± 0.7%) and total nitrogen (85.3 ± 3.2%). Microbial communities were significantly different at various RSt/Ust and reactor positions (P < 0.05). The unsaturated zone with low RSt/Ust showed more abundant microorganisms than the saturated zone with high RSt/Ust. The reactor-top community was predominant by aerobic nitrification (Nitrospira) and LAS biodegradation (Pseudomonas, Rhodobacter and Hydrogenophaga) related genera; but reactor-bottom community was predominant by anaerobic denitrification and organics removal related genera (Dechloromonas and Desulfovibrio). Most of the ARGs (e.g., intI-1, sul1, sul2 and korB) were accumulated in the biofilm, which were closely associated with microbial communities at reactor top and stratification. The saturated zone can achieve over 80% removal of the tested ARGs at all operation Phases. Results suggested that BhGAC-DBfR can provide assistance in blocking the environment dissemination of ARGs during greywater treatment.


Asunto(s)
Carbón Orgánico , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Nitrificación , Biopelículas , Nitrógeno/análisis , Oxígeno , Desnitrificación , Aguas del Alcantarillado
18.
J Affect Disord ; 334: 137-144, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37119869

RESUMEN

BACKGROUND: Suicide is the fourth leading cause of death among adolescents. Studies have shown that persistent suicidal ideation has a more important effect on suicidal behavior. The objective of this study was to identify predictors of persistent suicidal ideation. METHODS: Data were collected from 4225 Chinese middle and high school students. These adolescents were assessed for suicidal ideation at baseline and the second year. We used multinomial logistic regression (n = 4171) for the predictive effect of these factors on persistent suicidal ideation. We controlled for gender, residence, clinical diagnosis, clinical diagnosis family, suicide planning, and suicide attempts. RESULTS: Depressive symptoms are essential in predicting persistent suicidal ideation (OR = 14.0; p < 0.001). Persistent suicidal ideation was predicted by sleep disorders, such as poor sleep quality (OR = 2.3; p = 0.008), difficulty falling asleep (OR = 2.4; p = 0.005), frequently midnight awakening (OR = 1.9; p = 0.044), and frequent nightmares (OR = 2.1; p = 0.040). There was a significant association between concern with persistent ideation and parental-peer alienation (OR for father, 1.9[p = 0.024]; OR for mother, 3.1[p < 0.001]; OR for peer, 2.3[p = 0.003]). LIMITATIONS: All measures are based on self-report rather than objective assessment or clinical diagnostic assessment. CONCLUSIONS: Persistent suicidal ideation had a more important role in influencing suicide planning and attempt. Interventions targeting sleep disorders and attention to attachments in the home and school are particularly important in preventing persistent suicidal ideation in adolescents.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos del Sueño-Vigilia , Adolescente , Humanos , Pueblos del Este de Asia , Estudios Longitudinales , Factores de Riesgo , Trastornos del Sueño-Vigilia/epidemiología , Ideación Suicida , Intento de Suicidio/prevención & control , Intento de Suicidio/psicología
19.
Mol Pharm ; 20(6): 2978-2990, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37115233

RESUMEN

Under physiological conditions, nanoparticles (NPs) inevitably interact with proteins, resulting in extensive protein adsorption and the formation of a protein corona. Recent studies have shown that the different surface properties of NPs lead to varying degrees of conformational changes of adsorbed proteins. However, the impact of corona protein conformation on the in vitro and in vivo profiles of NPs remain largely unexplored. Herein, d-α-tocopherol polyethylene glycol 1000 succinate-based NPs with natural human serum albumin (HSAN) corona or thermally denatured HSA (HSAD) corona were synthesized following a previously established method. We then conducted a systematic study of the protein conformation as well as adsorption behaviors. Additionally, the impact of protein corona conformation on the NPs profiles in vitro and in vivo were elucidated to gain insight into its biological behaviors as a targeted delivery system for renal tubule diseases. Overall, NPs modified by HSAN corona showed improved serum stability, greater cell uptake efficiency, better renal tubular targetability, and therapeutic efficacy on acute kidney injury in rats than NPs modified by HSAD corona. Hence, the conformation of protein adsorbed on the surface of NPs may impact the in vitro and in vivo profiles of NPs.


Asunto(s)
Nanopartículas , Corona de Proteínas , Humanos , Ratas , Animales , Albúminas , Proteínas , Nanopartículas/metabolismo , Conformación Proteica
20.
Environ Pollut ; 327: 121533, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36997145

RESUMEN

Antibiotic resistance genes (ARGs) have been identified as serious threats to public health. Despite the widespread in various systems, dynamics of ARGs in three-dimensional multifunctional biofilm (3D-MFB) treating greywater are largely undefined. This work tracked the distributions and dynamics of eight target genes (intI1, korB, sul1, sul2, tetM, ermB, blaCTX-M and qnrS) in a 3D-MFB during greywater treatment. Results showed that hydraulic retention times at 9.0 h achieved the highest linear alkylbenzene sulfonate (LAS) and total nitrogen removal rates at 99.4% and 79.6%, respectively. ARGs presented significant liquid-solid distribution feature, but non-significant with biofilm position. Intracellular ARGs (predominant by intI1, korB, sul1 and sul2) at bottom biofilm were 210- to 4.2 × 104- fold higher than that in cell-free liquid. Extracellular polymeric substances (EPS)-attached LAS showed linear relationship with most of ARGs (R2 > 0.90, P < 0.05). Sphingobacteriales, Chlamydiales, Microthrixaceae, SB-1, Cryomorphaceae, Chitinophagaceae, Leadbetterella and Niabella were tightly bound up with target ARGs. Key is that EPS-attached LAS considerably determines the occurrence of ARGs, and microbial taxa play an important role in the dissemination of ARGs in the 3D-MFB.


Asunto(s)
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Biopelículas , Matriz Extracelular de Sustancias Poliméricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...