Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Photochem Photobiol B ; 257: 112959, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38943712

RESUMEN

The spectral composition of some light-emitting diodes (LEDs) reportedly results in higher crop yield, prevents wilting, and reduces thermal damage to plants. The use of LEDs for postharvest storage and shelf-life extension has been limited, but the potential of this technology will allow for greater applications in horticulture and the food industry. In this experiment, 'Winterbor' kale (Brassica oleracea) and 'Melody' spinach (Spinacia oleracea) plants were measured for the light compensation point and stomatal response under 14 different wavelengths of light ranging from 405 to 661 nm. Data collected from these measurements were used to select two different wavelengths of LEDs and determine the proper irradiance levels for an LED irradiance storage test on spinach and kale. Treatments comprising blue, red, and amber lights were effective at increasing the stomatal opening, while the green light resulted in reduced stomatal opening. For spinach, the light response curve showed that light compensation points at 500 nm and 560 nm were 65.3 and 64.7 µmol m-2 s-1, respectively. For kale, the light compensation points at 500 nm and 560 nm were 50.8 and 44.1 µmol m-2 s-1, respectively. For the storage test experiment at room temperature, kale and spinach were stored under four different treatments: dark treatment (control), standard white fluorescent light, 500 nm, and 560 nm LED wavelengths. For spinach, the moisture content was 70.1% at 560 nm and 53.7% for dark, moisture losses of 41.5% under the 560-nm treatment and 52.0% for the dark treatment. The fresh basis moisture content was 74.6% at 560 nm and 59.3% in the dark. Moisture loss under the 560 nm treatment was 39.6% while the dark treatment had a 54.0% moisture loss. A visual assessment scale was monitored, 560 nm resulted in the top visual quality for kale compared to the other treatments with the lowest visual quality under the dark treatment at day 4. For spinach, the visual quality for 560 nm treatment was statistically the standard white fluorescent light and 500 nm, with poor-quality product occurring by day 4 and the lowest-quality product occurring at day 5. The LED treatments improved the shelf life of spinach and kale, likely as a result of stomatal aperture closure, photosynthetic rate near the light compensation point and stability of the atmospheric moisture content. This study provides valuable information on the extension of the shelf life of leafy greens during storage. Reducing fresh produce waste in grocery stores will increase revenue, thereby benefiting the Canadian economy while providing social and environmental benefits that entail increased food security and reduced food waste.

2.
J Photochem Photobiol B ; 256: 112939, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761748

RESUMEN

The visible light spectrum (400-700 nm) powers plant photosynthesis and innumerable other biological processes. Photosynthesis curves plotted by pioneering photobiologists show that amber light (590-620 nm) induces the highest photosynthetic rates in this spectrum. Yet, both red and blue light are viewed superior in their influence over plant growth. Here we report two approaches for quantifying how light wavelength photosynthesis and plant growth using light emitting diodes (LEDs). Resolved quantum yield spectra of tomato and lettuce plants resemble those acquired earlier, showing high quantum utilization efficiencies in the 420-430 nm and 590-620 nm regions. Tomato plants grown under blue (445 nm), amber (595 nm), red (635 nm), and combined red-blue-amber light for 14 days show that amber light yields higher fresh and dry mass, by at least 20%. Principle component analysis shows that amber light has a more pronounced and direct effect on fresh mass, whereas red light has a major effect on dry mass. These data clarify amber light's primary role in photosynthesis and suggest that bandwidth determines plant growth and productivity under sole amber lighting. Findings set precedence for future work aimed at maximizing plant productivity, with widespread implications for controlled environment agriculture.


Asunto(s)
Luz , Fotosíntesis , Solanum lycopersicum , Fotosíntesis/efectos de la radiación , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/efectos de la radiación , Solanum lycopersicum/metabolismo , Lactuca/crecimiento & desarrollo , Lactuca/efectos de la radiación , Lactuca/metabolismo
3.
Photochem Photobiol Sci ; 23(2): 339-354, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38308169

RESUMEN

Ultraviolet radiation's germicidal efficacy depends on several parameters, including wavelength, radiant exposure, microbial physiology, biological matrices, and surfaces. In this work, several ultraviolet radiation sources (a low-pressure mercury lamp, a KrCl excimer, and four UV LEDs) emitting continuous or pulsed irradiation were compared. The greatest log reductions in E. coli cells and B. subtilis endospores were 4.1 ± 0.2 (18 mJ cm-2) and 4.5 ± 0.1 (42 mJ cm-2) with continuous 222 nm, respectively. The highest MS2 log reduction observed was 2.7 ± 0.1 (277 nm at 3809 mJ cm-2). Log reductions of SARS-CoV-2 with continuous 222 nm and 277 nm were ≥ 3.4 ± 0.7, with 13.3 mJ cm-2 and 60 mJ cm-2, respectively. There was no statistical difference between continuous and pulsed irradiation (0.83-16.7% [222 nm and 277 nm] or 0.83-20% [280 nm] duty rates) on E. coli inactivation. Pulsed 260 nm radiation (0.5% duty rate) at 260 nm yielded significantly greater log reduction for both bacteria than continuous 260 nm radiation. There was no statistical difference in SARS-CoV-2 inactivation between continuous and pulsed 222 nm UV-C radiation and pulsed 277 nm radiation demonstrated greater germicidal efficacy than continuous 277 nm radiation. Greater radiant exposure for all radiation sources was required to inactivate MS2 bacteriophage. Findings demonstrate that pulsed irradiation could be more useful than continuous UV radiation in human-occupied spaces, but threshold limit values should be respected. Pathogen-specific sensitivities, experimental setup, and quantification methods for determining germicidal efficacy remain important factors when optimizing ultraviolet radiation for surface decontamination or other applications.


Asunto(s)
COVID-19 , Rayos Ultravioleta , Humanos , SARS-CoV-2 , Escherichia coli/efectos de la radiación , Desinfección/métodos
4.
Int Immunopharmacol ; 124(Pt A): 110851, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37651853

RESUMEN

According to epidemiological studies, smoking is one of the leading causes of the high incidence of abdominal aortic aneurysms (AAA).3,4-Benzopyrene (Bap) is a by-product of coal tar and tobacco combustion produced by the incomplete combustion of organic fuels. It is an essential component of both automobile exhaust and tobacco smoke, it is also an important member of the air pollutants. However, the exact mechanism by which Bap can worsen the condition of patients with AAA and increase the mortality of patients with AAA remains unknown. This research aims to investigate the role of Bap in inducing pyroptosis in AAA. In vitro experiments, we revealed that pyroptosis-Gasdermin D (GSDMD) increased when Bap was used. Additionally, the release of inflammatory factors, such as IL-1ß and IL-18 were also rising. An mRNA sequencing analysis revealed that macrophages expressed a high level of the endothelin gene when cells were stimulated by Bap. It seemed that smooth muscle cells pyroptosis was related to macrophages. Experiments revealed that endothelin could increase the calcium ion concentration in smooth muscle cells, resulting in a large amount of ROS and activation of NLRP3 inflammasomes. We discovered that treatment with endothelin receptor antagonist (ABT-546) in vivo and calcium ion chelator (BAPTA) in vitro decreased AAA diameter, downregulated NLRP3 inflammasomes and ROS, and significantly reduced the number of activated GSDMD. Inflammatory mediators were released at a lower level. These findings suggest that Bap-induced pyroptosis may be mediated by the ET-1-Ca2+-inflammasome pathway, providing a new way to reduce mortality in AAA patients.

5.
Plants (Basel) ; 12(13)2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37447018

RESUMEN

Full-spectrum light-emitting diodes (LEDs) mainly comprising 460-nm + 595-nm light are becoming a mainstay in the horticulture industry, and recent studies indicate that plant productivity under white LEDs is higher than combined blue and red LED lighting. Different light properties (wavelength and bandwidth) in full-spectrum light, particularly for the blue and amber light regions, have only partly been explored. This research aimed to characterize the effects of amber + blue light wavelengths and bandwidths on tomato (Solanum lycopersicum cv. Beefsteak) growth, morphology, and production efficiency. Tomato seedlings were subjected to four different light treatments for 60 days: narrow amber light (595 nm), narrow blue + narrow amber light (430 nm + 595 nm) with a 1:10 ratio, white LED (455 nm + 595 nm), and a high-pressure sodium (HPS) lamp (control). The highest mean fresh mass yield occurred with the narrow blue + narrow amber light (479 g), followed by white LED at 20% less, HPS at 34% less, and narrow amber at 40% less. Dry mass and plant height were similar among light treatments. Supplementing narrow amber light with 430-nm blue light led to a 20% increase in chlorophyll content. Findings indicate that narrow amber light is more efficient in biomass accumulation than broad amber light and that precise selection of different blue and amber wavelengths can greatly impact the growth and development of tomato seedlings. This energy-efficient narrow-wavelength combination shows improvement over white LED lighting for maximizing tomato growth.

6.
Int Immunopharmacol ; 122: 110481, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37390647

RESUMEN

BACKGROUND: Air pollution is an important and interventionable risk factor for cardiovascular disease. Air pollution exposure, even for a short-term exposure, is conspicuously relevant to increased risk of myocardial infarction (MI) mortality and clinical evidence has shown that air pollution particulate matter (PM) induces the aggravation of AMI. 3,4-benzo[a]pyrene (BaP), an extremely toxic polycyclic aromatic hydrocarbon (PAH) and a common component of PM, is listed as one of the main objects of environmental pollution monitoring. Both epidemiological and toxicological studies suggest that BaP exposure may be associated with cardiovascular disease. Since PM is significantly associated with the increased risk of MI mortality, and BaP is an important component of PM associated with cardiovascular disease, we intend to investigate the effect of BaP on MI models. METHODS: The MI mouse model and the oxygen and glucose deprivation (OGD) H9C2 cell model were used to investigate the effect of BaP in MI injury. The involvement of mitophagy and pyroptosis in regulating deterioration of cardiac function and aggravation of MI injury induced by BaP was comprehensively evaluated. RESULTS: Our study shows that BaP exacerbates MI injury in vivo and in vitro, a result based on BaP-induced NLRP3-related pyroptosis. In addition, BaP can inhibit PINK1/Parkin dependent mitophagy through the aryl hydrocarbon receptor (AhR), thus the mitochondrial permeability transition pore (mPTP) was induced to open. CONCLUSION: Our results suggest a role for the BaP from air pollution in MI injury aggravation and reveal that BaP aggravates MI injury by activating NLRP3-related pyroptosis via the PINK1/Parkin-mitophagy-mPTP opening axis.


Asunto(s)
Infarto del Miocardio , Piroptosis , Ratones , Animales , Mitofagia , Proteína con Dominio Pirina 3 de la Familia NLR , Benzo(a)pireno , Proteínas Quinasas , Ubiquitina-Proteína Ligasas
7.
Ecotoxicol Environ Saf ; 254: 114701, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36871353

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are produced during combustion of organic matter, such as during cigarette smoking, and they exist widely in the environment. Exposure to 3,4-benzo[a]pyrene (BaP), as the most widely studied PAHs, relates to many cardiovascular diseases. However, the underlying mechanism of its involvement remains largely unclear. In this study, we developed a myocardial ischemia-reperfusion (I/R) injury mouse model and an oxygen and glucose deprivation-reoxygenation H9C2 cell model to evaluate the effect of BaP in I/R injury. After BaP exposure, the expression of autophagy-related proteins, the abundance of NLRP3 inflammasomes, and the degree of pyroptosis were measured. Our results show that BaP aggravates myocardial pyroptosis in a autophagy-dependent manner. In addition, we found that BaP activates the p53-BNIP3 pathway via the aryl hydrocarbon receptor to decrease autophagosome clearance. Our findings present new insights into the mechanisms underlying cardiotoxicity and reveal that the p53-BNIP3 pathway, which is involved in autophagy regulation, is a potential therapeutic target for BaP-induced myocardial I/R injury. Because PAHs are omnipresent in daily life, the toxic effects of these harmful substances should not be underestimated.


Asunto(s)
Daño por Reperfusión Miocárdica , Ratones , Animales , Daño por Reperfusión Miocárdica/metabolismo , Piroptosis , Benzo(a)pireno/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína p53 Supresora de Tumor , Autofagia
8.
J Inflamm Res ; 16: 691-700, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844255

RESUMEN

Objective: The present study aimed to evaluate the relationship between all-cause mortality and the neutrophil percentage-to-albumin ratio (NPAR) in patients with atrial fibrillation (AF). Methods: We obtained clinical information from patients with AF from the Medical Information Mart for Intensive Care-IV version 2.0 (MIMIC-IV) database and the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University (WMU). The clinical endpoints were all-cause death measured at 30-day, 90-day, and one-year intervals. For endpoints associated with the NPAR, logistic regression models were used to calculate odds ratios (OR) with 95% confidence intervals (CI). Receiver operating characteristic (ROC) curves and area under the curve (AUC) were developed to compare the ability of different inflammatory biomarkers to predict 90-day mortality in patients with AF. Results: Higher NPAR was associated with a higher risk of 30-day (OR 2.08, 95% CI 1.58-2.75), 90-day (OR 2.07, 95% CI 1.61-2.67), and one-year mortality (OR 1.60, 95% CI 1.26-2.04) in patients with AF in 2813 patients from MIMIC-IV. The predictive performance of NPAR (AUC = 0.609) for 90-day mortality was better than that of neutrophil-to-lymphocyte ratio (NLR) (AUC = 0.565, P < 0.001), and platelet-to-lymphocyte ratio (PLR) (AUC = 0.528, P < 0.001). When NPAR and sequential organ failure assessment (SOFA) were combined, the AUC increased from 0.609 to 0.674 (P < 0.001). Higher NPAR was associated with a higher risk of 30-day mortality (OR 2.54, 95% CI 1.02-6.30) and 90-day mortality (OR 2.76, 95% CI 1.09-7.01) in 283 patients from WMU. Conclusion: An increased 30-day, 90-day, and one-year mortality risk among patients with AF were linked to a higher NPAR in MIMIC-IV. NPAR was thought to be a good predictor of 90-day all-cause mortality. Higher NPAR was associated with a higher risk of 30-day and 90-day mortality in WMU.

9.
Plants (Basel) ; 11(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36365435

RESUMEN

Light is one of the most crucial parameters for enclosed cannabis (Cannabis sativa) production, as it highly influences growth, secondary metabolite production, and operational costs. The objective of this study was to investigate and evaluate the impact of six light spectra on C. sativa ('Babbas Erkle Cookies' accession) growth traits and secondary metabolite (cannabinoid and terpene) profiles. The light spectra evaluated included blue (430 nm), red (630 nm), rose (430 + 630 nm, ratio 1:10), purple (430 + 630 nm, ratio 2:1), and amber (595 nm) LED treatments, in addition to a high-pressure sodium (HPS, amber-rich light) treatment as a control. All the LED light treatments had lower fresh mean inflorescence mass than the control (HPS, 133.59 g plant-1), and monochromatic blue light yielded the least fresh inflorescence mass (76.39 g plant-1). Measurement of Δ9-tetrahydrocannabinol (THC) concentration (%) and total yield (g plant-1) showed how inflorescence mass and THC concentration need to be analyzed conjointly. Blue treatment resulted in the highest THC concentration (10.17% m/m), yet the lowest THC concentration per plant (1.44 g plant-1). The highest THC concentration per plant was achieved with HPS (2.54 g plant-1). As with THC, blue light increased cannabigerol (CBG) and terpene concentration. Conversely, blue light had a lesser impact on cannabidiol (CBD) biosynthesis in this C. sativa chemotype. As the combined effects of the light spectrum on both growth traits and secondary metabolites have important ramifications for the industry, the inappropriate spectral design could cause a reduction in cannabinoid production (20-40%). These findings show promise in helping producers choose spectral designs that meet specific C. sativa production goals.

10.
Phytomedicine ; 104: 154336, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35849969

RESUMEN

BACKGROUND: The pathogenesis of myocardial ischemia/reperfusion is complex, involving multiple regulatory genes and environmental factors, and requiring the simultaneous regulation of multiple targets. Meanwhile, Traditional Chinese Medicine (TCM) has certain advantages in the comprehensive treatment of multi-site, multi-target conditions and overall regulation of this condition. This study explores the effect of the well-known TCM, the Shexiang Baoxin Pill (SBP) on myocardial ischemia/reperfusion injury in mice. MATERIALS AND METHODS: In vivo, 20 mg/kg/day SBP was administered by gavage for 28 days. In vitro, cardiomyocytes were pretreated with 25 µg/ml SBP for 24 h. Evans blue/TTC double-staining was employed to determine the infarct size. Markers of myocardial injury were detected in the serum and cell supernatants. The changes of pyroptosis and autophagy proteins were detected by western blot. Immunofluorescence, immunohistochemistry and PCR were performed to further illustrate the results. RESULTS: SBP significantly reduced the myocardial infarct size, decreased the myocardial injury markers, inhibited cardiomyocyte pyroptosis and oxidative stress, and promoted autophagy in vivo. In vitro, SBP alleviated cardiomyocyte pyroptosis, inhibited oxidative stress, reduced IL-1ß and IL-18 secretion, and unblocked autophagy flux. Myocardial injury is mitigated by SBP via the rapid degradation of autophagosomes, and SBP promotes the accumulation of autophagosomes by downregulating mmu_circ_0005874, Map3k8 and upregulating mmu-miR-543-3p. CONCLUSION: We found for the first time that SBP can inhibit pyroptosis and oxidative stress, and protect from myocardial I/R injury. In addition, it inhibits pyroptosis and improves H/R injury by promoting autophagosome generation and accelerating autophagic flux. SBP interferes with autophagy through the interaction between mmu_circ_0005874/mmu-miR-543-3p/Map3k8.


Asunto(s)
Medicamentos Herbarios Chinos , MicroARNs , Daño por Reperfusión Miocárdica , Animales , Autofagia , Medicamentos Herbarios Chinos/uso terapéutico , Quinasas Quinasa Quinasa PAM , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos , Proteínas Proto-Oncogénicas , ARN/genética , ARN/metabolismo
11.
Front Cardiovasc Med ; 9: 869816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35686040

RESUMEN

Objectives: The purpose of this study was to investigate the independent effect of the ratio of red blood cell distribution width (RDW) to albumin (RA) on all-cause mortality in patients after percutaneous coronary intervention (PCI). Methods: Clinical data were obtained from the Multiparameter Intelligent Monitoring in Intensive Care-III (MIMIC-III) database version 1.4 and the database of Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University. We used the MIMIC-III database for model training, and data collected from the Second Affiliated Hospital of Wenzhou Medical University for validation. The primary outcome of our study was 90-day mortality. Cox proportional hazards regression model was used to estimate hazard ratio (HR) for the association between RA and all-cause mortality in patients after PCI. Pearson correlation analysis was conducted to assess the relationship between RA and Gensini score or cardiac troponin I (cTnI). Results: A total of 707 patients were eligible in MIMIC-III database, including 432 males, with a mean age of 70.29 years. For 90-day all-cause mortality, in the adjusted multivariable model, the adjusted HRs [95% confidence intervals (CIs)] for the second (RA: 3.7-4.5 ml/g) and third (RA >4.5 ml/g) tertiles were 2.27 (1.11, 4.64) and 3.67 (1.82, 7.40), respectively, compared to the reference group (RA <3.7 ml/g) (p < 0.05). A similar relationship was also observed for 30-day all-cause mortality and 1-year all-cause mortality. No significant interaction was observed in subgroup analysis. Receiver operating characteristic (ROC) curve analysis proved that the ability of RA to predict the 90-day mortality was better than that of RDW or albumin alone. The correlation coefficient between Gensini score and RA was 0.254, and that between cTnI and RA was 0.323. Conclusion: RA is an independent risk factor for all-cause mortality in patients after PCI. The higher the RA, the higher the mortality. RA has a good predictive ability for all-cause mortality in patients after PCI, which is better than RDW or albumin alone. RA may be positively correlated with the severity of coronary artery disease (CAD) in patients with CAD.

12.
J Proteomics ; 265: 104635, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35659537

RESUMEN

Incident light is a central modulator of plant growth and development. However, there are still open questions surrounding wavelength-specific plant proteomic responses. Here we applied tandem mass tag based quantitative proteomics technology to acquire an in-depth view of proteome changes in Arabidopsis thaliana response to narrow wavelength blue (B; 450 nm), amber (A; 595 nm), and red (R; 650 nm) light treatments. A total of 16,707 proteins were identified with 9120 proteins quantified across all three light treatments in three biological replicates. This enabled examination of changes in the abundance for proteins with low abundance and important regulatory roles including transcription factors and hormone signaling. Importantly, 18% (1631 proteins) of the A. thaliana proteome is differentially abundant in response to narrow wavelength lights, and changes in proteome correlate well with different morphologies exhibited by plants. To showcase the usefulness of this resource, data were placed in the context of more than thirty published datasets, providing orthogonal validation and further insights into light-specific biological pathways, including Systemic Acquired Resistance and Shade Avoidance Syndrome. This high-resolution resource for A. thaliana provides baseline data and a tool for defining molecular mechanisms that control fundamental aspects of plant response to changing light conditions, with implications in plant development and adaptation. SIGNIFICANCE: Understanding of molecular mechanisms involved in wavelength-specific response of plant is question of widespread interest both to basic researchers and to those interested in applying such knowledge to the engineering of novel proteins, as well as targeted lighting systems. Here we sought to generate a high-resolution proteomic profile of plant leaves, based on exposure to specific narrow-wavelength lights. Although changes in plant physiology in response to light spectral composition is well documented, there is limited knowledge on the roles of specific light wavelengths and their impact. Most previous studies have utilized relatively broad wavebands in their experiments. Such multi-wavelengths lights trigger diverse and complex signaling networks that pose major challenges in inference of wavelength-specific molecular processes that underly the plant response. Moreover, most studies have compared the effect of blue and red wavelengths comparing with FL, as control. As FL light consists the mixed spectra composition of both red and blue as well as numerous other wavelengths, comparing undeniably results in inconsistent and overlapping responses that will hamper effects to elucidate the plant response to specific wavelengths [1, 2]. Monitoring plant proteome response to specific wavelengths and further contrasting the changes with one another, rather than comparing plants proteome to FL, is thus necessary to gain detailed insights on underlying biological pathways and their consequences in plant physiology. Here, we employed narrow wavelength LED lights in our design to eliminate a potential overlap in molecular responses by ensuring non-overlapping wavelengths in the light treatments. We further applied TMT-labeling technology to gain a high-resolution view on the proteome changes. Our proteomics data provides an in-depth coverage suitable for system-wide analyses, providing deep insights on plant molecular response particularly because of the tremendous increase in the coverage of identified proteins which outreach the other biological data.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Hojas de la Planta/metabolismo , Proteoma/metabolismo , Proteómica/métodos
13.
Life (Basel) ; 11(8)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34440556

RESUMEN

Plants pigments, such as chlorophyll and carotenoids, absorb light within specific wavelength ranges, impacting their response to environmental light changes. Although the color-specific response of plants to natural levels of light is well described, extreme high-light stress is still being discussed as a general response, without considering the impact of wavelengths in particular response processes. In this study, we explored how the plant proteome coordinated the response and recovery to extreme light conditions (21,000 µmol m-2 s-1) under different wavelengths. Changes at the protein and mRNA levels were measured, together with the photosynthetic parameters of plants under extreme high-light conditions. The changes in abundance of four proteins involved in photoinhibition, and in the biosynthesis/assembly of PSII (PsbS, PsbH, PsbR, and Psb28) in both light treatments were measured. The blue-light treatment presented a three-fold higher non-photochemical quenching and did not change the level of the oxygen-evolving complex (OEC) or the photosystem II (PSII) complex components when compared to the control, but significantly increased psbS transcripts. The red-light treatment caused a higher abundance of PSII and OEC proteins but kept the level of psbS transcripts the same as the control. Interestingly, the blue light stimulated a more efficient energy dissipation mechanism when compared to the red light. In addition, extreme high-light stress mechanisms activated by blue light involve the role of OEC through increasing PsbS transcript levels. In the proteomics spatial analysis, we report disparate activation of multiple stress pathways under three differently damaged zones as the enriched function of light stress only found in the medium-damaged zone of the red LED treatment. The results indicate that the impact of extreme high-light stress on the proteomic level is wavelength-dependent.

14.
Plants (Basel) ; 10(6)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071921

RESUMEN

Red and blue light are the principal wavelengths responsible for driving photosynthetic activity, yet amber light (595 nm) has the highest quantum efficiency and amber-rich high pressure sodium lamps result in superior or comparable plant performance. On this basis, we investigated how lettuce plant growth and photosynthetic activity were influenced by broad and narrow light spectra in the 590-630 nm range, by creating amber and red light-emitting diode (LED) spectra that are not commercially available. Four different light spectra were outfitted from existing LEDs using shortpass and notch filters: a double peak spectrum (595 and 655 nm; referred to as 595 + 655-nm light) that excluded 630-nm light, 595-nm, 613-nm, and 633-nm light emitting at an irradiance level of 50 W·m-2 (243-267 µmol·m-2·s-1). Shifting LED wavelengths from 595 nm to 633 nm and from 595 nm to 613 nm resulted in a biomass yield decrease of ~50% and ~80%, respectively. When 630-nm light is blocked, lettuce displayed expanded plant structures and the absence of purple pigmentation. This report presents a new and feasible approach to plant photobiology studies, by removing certain wavelengths to assess and investigate wavelength effect on plant growth and photosynthesis. Findings indicate that amber light is superior to red light for promoting photosynthetic activity and plant productivity, and this could set precedence for future work aimed at maximizing plant productivity in controlled environment agriculture.

15.
Front Plant Sci ; 12: 620021, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34135916

RESUMEN

Cannabis sativa L. is cultivated for its secondary metabolites, of which the cannabinoids have documented health benefits and growing pharmaceutical potential. Recent legal cannabis production in North America and Europe has been accompanied by an increase in reported findings for optimization of naturally occurring and synthetic cannabinoid production. Of the many environmental cues that can be manipulated during plant growth in controlled environments, cannabis cultivation with different lighting spectra indicates differential production and accumulation of medically important cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabigerol (CBG), as well as terpenes and flavonoids. Ultraviolet (UV) radiation shows potential in stimulating cannabinoid biosynthesis in cannabis trichomes and pre-harvest or post-harvest UV treatment merits further exploration to determine if plant secondary metabolite accumulation could be enhanced in this manner. Visible LED light can augment THC and terpene accumulation, but not CBD. Well-designed experiments with light wavelengths other than blue and red light will provide more insight into light-dependent regulatory and molecular pathways in cannabis. Lighting strategies such as subcanopy lighting and varied light spectra at different developmental stages can lower energy consumption and optimize cannabis PSM production. Although evidence demonstrates that secondary metabolites in cannabis may be modulated by the light spectrum like other plant species, several questions remain for cannabinoid production pathways in this fast-paced and growing industry. In summarizing recent research progress on light spectra and secondary metabolites in cannabis, along with pertinent light responses in model plant species, future research directions are presented.

16.
PLoS One ; 16(3): e0247380, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33661984

RESUMEN

The impacts of wavelengths in 500-600 nm on plant response and their underlying mechanisms remain elusive and required further investigation. Here, we investigated the effect of light quality on leaf area growth, biomass, pigments content, and net photosynthetic rate (Pn) across three Arabidopsis thaliana accessions, along with changes in transcription, photosynthates content, and antioxidative enzyme activity. Eleven-leaves plants were treated with BL; 450 nm, AL; 595 nm, RL; 650 nm, and FL; 400-700 nm as control. RL significantly increased leaf area growth, biomass, and promoted Pn. BL increased leaf area growth, carotenoid and anthocyanin content. AL significantly reduced leaf area growth and biomass, while Pn remained unaffected. Petiole elongation was further observed across accessions under AL. To explore the underlying mechanisms under AL, expression of key marker genes involved in light-responsive photosynthetic reaction, enzymatic activity of antioxidants, and content of photosynthates were monitored in Col-0 under AL, RL (as contrast), and FL (as control). AL induced transcription of GSH2 and PSBA, while downregulated NPQ1 and FNR2. Photosynthates, including proteins and starches, showed lower content under AL. SOD and APX showed enhanced enzymatic activity under AL. These results provide insight into physiological and photosynthetic responses to light quality, in addition to identifying putative protective-mechanisms that may be induced to cope with lighting-stress in order to enhance plant stress tolerance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Luz , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Estrés Fisiológico/fisiología
17.
Front Plant Sci ; 12: 611893, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33633764

RESUMEN

Rapid technology development in controlled environment (CE) plant production has been applied to a large variety of plants. In recent years, strawberries have become a popular fruit for CE production because of their high economic and nutritional values. With the widespread use of light-emitting diode (LED) technology in the produce industry, growers can manipulate strawberry growth and development by providing specific light spectra. Manipulating light intensity and spectral composition can modify strawberry secondary metabolism and highly impact fruit quality and antioxidant properties. While the impact of visible light on secondary metabolite profiles for other greenhouse crops is well documented, more insight into the impact of different light spectra, from UV radiation to the visible light spectrum, on strawberry plants is required. This will allow growers to maximize yield and rapidly adapt to consumer preferences. In this review, a compilation of studies investigating the effect of light properties on strawberry fruit flavonoids is provided, and a comparative analysis of how light spectra influences strawberry's photobiology and secondary metabolism is presented. The effects of pre-harvest and post-harvest light treatments with UV radiation and visible light are considered. Future studies and implications for LED lighting configurations in strawberry fruit production for researchers and growers are discussed.

18.
Plant Sci ; 289: 110272, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31623794

RESUMEN

The basis of a plant's spectral response of photosynthesis, or the photosynthetically active radiation (PAR) curve, is derived from earlier studies nearly five decades ago. These studies reported that blue and red light were the primary wavelengths; however, shifting within red and blue peaks (10-40 nm) in addition to different PAR curve shapes was observed. In recent years, the McCree curve, which is considered the standard for spectral response of photosynthesis, has been challenged because of experimental design and differences between photosynthetic and whole-plant growth responses. Therefore, this overview provides an amalgamation of all the PAR curve studies, with a focus on narrow spectrum light characteristics, including light measurement units, full width at half maximums (FWHMs) of narrow light spectra, and light intensity levels. While replicating these pioneering works with higher wavelength resolution and narrower light spectrum across the whole visible spectrum is still challenging, we hope that this re-interpretation of PAR curves in plants can elucidate and provide in-depth insight into spectral responses of photosynthesis. We leave the readers with some different perspectives and prospects that need to be considered for future studies.


Asunto(s)
Luz , Fotosíntesis , Plantas/metabolismo
19.
Front Plant Sci ; 10: 296, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001288

RESUMEN

This review presents recent developments in plant photobiology and lighting systems for horticultural crops, as well as potential applications for cannabis (Cannabis sativa and C. indica) plant production. The legal and commercial production of the cannabis plant is a relatively new, rapidly growing, and highly profitable industry in Europe and North America. However, more knowledge transfer from plant studies and horticultural communities to commercial cannabis plant growers is needed. Plant photosynthesis and photomorphogenesis are influenced by light wavelength, intensity, and photoperiod via plant photoreceptors that sense light and control plant growth. Further, light properties play a critical role in plant vegetative growth and reproductive (flowering) developmental stages, as well as in biomass, secondary metabolite synthesis, and accumulation. Advantages and disadvantages of widespread greenhouse lighting systems that use high pressure sodium lamps or light emitting diode (LED) lighting are known. Some artificial plant lighting practices will require improvements for cannabis production. By manipulating LED light spectra and stimulating specific plant photoreceptors, it may be possible to minimize operation costs while maximizing cannabis biomass and cannabinoid yield, including tetrahydrocannabinol (or Δ9-tetrahydrocannabinol) and cannabidiol for medicinal and recreational purposes. The basics of plant photobiology (photosynthesis and photomorphogenesis) and electrical lighting systems are discussed, with an emphasis on how the light spectrum and lighting strategies could influence cannabis production and secondary compound accumulation.

20.
Proteome Sci ; 16: 20, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534005

RESUMEN

BACKGROUND: Abiotic stress reduces photosynthetic yield and plant growth, negatively impacting global crop production and is a major constraint faced by agriculture. However, the knowledge on the impact on plants under extremely high irradiance is limited. We present the first in-depth proteomics analysis of plants treated with a method developed by our research group to generate a light gradient using an extremely intense light. METHODS: The method consists of utilizing light emitting diodes (LED) to create a single spot at 24,000 µmol m- 2 s- 1 irradiance, generating three light stress levels. A light map and temperature profile were obtained during the light experiment. The proteins expressed in the treated tomato (Solanum lycopersicum, Heinz H1706) leaves were harvested 10 days after the treatment, allowing for the detection of proteins involved in a long-term recovery. A multiplex labeled proteomics method (iTRAQ) was analyzed by LC-MS/MS. RESULTS: A total of 3994 proteins were identified at 1% false discovery rate and matched additional quality filters. Hierarchical clustering analysis resulted in four types of patterns related to the protein expression, with one being directly linked to the increased LED irradiation. A total of 37 proteins were found unique to the least damaged leaf zone, while the medium damaged zone had 372 proteins, and the severely damaged presented unique 1003 proteins. Oxygen evolving complex and PSII complex proteins (PsbH, PsbS, PsbR and Psb28) were found to be abundant in the most damaged leaf zone. This leaf zone presented a protein involved in the salicylic acid response, while it was not abundant in the other leaf zones. The mRNA level of PsbR was significantly lower (1-fold) compared the control in the most damaged zone of the leaf, while Psb28 and PsbH were lower (1-fold) in the less damaged leaf zones. PsbS mRNA abundance in all leaf zones tested presented no statistically significant change from the control. CONCLUSIONS: We present the first characterization of the proteome changes caused by an extreme level of high-light intensity (24,000 µmol m- 2 s- 1). The proteomics results show the presence of specific defense responses to each level of light intensity, with a possible involvement of proteins PsbH, Psb28, PsbR, and PsbS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...