Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Biosci (Landmark Ed) ; 29(4): 135, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38682187

RESUMEN

OBJECTIVE: Lung adenocarcinoma (LUAD) is a prominent contributor to global cancer mortality, characterized by constrained prognosis. This study aimed to develop a novel prognostic indicator, the Cell Death Index (CDI), utilizing twelve programmed cell death (PCD) pattern genes, to predict the immune infiltration and prognosis in LUAD patients. METHODS: We collected PCD-related genes and identified prognostic PCD genes in the Cancer Genome Atlas (TCGA)-LUAD dataset, and made rigorous validation in the Clinical Proteomic Tumor Analysis Consortium (CPTAC)-LUAD cohorts. CDI was calculated using a multivariable Cox regression model. Functional enrichment and tumor microenvironment were evaluated. Drug sensitivity prediction and nomogram development were performed to assess CDI's potential value. RESULTS: The results revealed 10 PCD genes (ERO1A, CDK5R1, TRIM6, DNASE2B, ITPRIP, MRGPRX2, FGA, NDUFA13, NLRP2, and CD68) significantly associated with LUAD prognosis. The CDI was constructed and showed high accuracy in predicting patient survival with C-index values of 0.801 and 0.794 in the prognosis cohort and validation cohort, respectively. CDI is also indicative of variations in biological functions, tumor microenvironment, and immune cell infiltration including neutrophils, activated mast cells, activated dendritic cells, M0 macrophages, resting natural killer cells, γδT cells, and activated memory CD4+T cells. Furthermore, drug sensitivity analysis indicated potential targeted strategies. CONCLUSIONS: The CDI, based on PCD genes, serves as a robust prognostic tool for LUAD, offering profound insights into tumor biology, immune response, and personalized treatment strategies. This study underscores the pivotal role of PCD mechanisms in LUAD pathogenesis and identifies potential therapeutic targets.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Transcriptoma , Microambiente Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Pronóstico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/mortalidad , Adenocarcinoma del Pulmón/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Transcriptoma/genética , Biomarcadores de Tumor/genética , Masculino , Perfilación de la Expresión Génica/métodos , Femenino , Regulación Neoplásica de la Expresión Génica , Nomogramas , Persona de Mediana Edad , Apoptosis/genética , Anciano
2.
J Clin Lab Anal ; 36(7): e24507, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35611939

RESUMEN

BACKGROUND: Prognostic signatures based on autophagy genes have been proposed for esophageal squamous cell carcinoma (ESCC). Autophagy genes are closely associated with m6A genes. Our purpose is to identify m6A-related autophagy genes in ESCC and develop a survival prediction model. METHODS: Differential expression analyses for m6A genes and autophagy genes were performed based on TCGA and HADd databases followed by constructing a co-expression network. Uni-variable Cox regression analysis was performed for m6A-related autophagy genes. Using the optimal combination of feature genes by LASSO Cox regression model, a prognostic score (PS) model was developed and subsequently validated in an independent dataset. RESULTS: The differential expression of 13 m6A genes and 107 autophagy genes was observed between ESCC and normal samples. The co-expression network contained 13 m6A genes and 96 autophagy genes. Of the 12 m6A-related autophagy genes that were significantly related to survival, DAPK2, DIRAS3, EIF2AK3, ITPR1, MAP1LC3C, and TP53 were used to construct a PS model, which split the training set into two risk groups with significant different survival ratios (p = 0.015, 1-year, 3-year, and 5-year AUC = 0.873, 0.840, and 0.829). Consistent results of GSE53625 dataset confirmed predictive ability of the model (p = 0.024, 1-year, 3-year, and 5-year AUC = 0.793, 0.751, and 0.744). The six-gene PS score was an independent prognostic factor from clinical factors (HR, 2.362; 95% CI, 1.390-7.064; p-value = 0.012). CONCLUSION: Our study recommends 6 m6A-related autophagy genes as promising prognostic biomarkers and develops a PS model to predict survival in ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Autofagia/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Humanos , Pronóstico , Modelos de Riesgos Proporcionales
3.
Oncol Lett ; 20(6): 284, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33014162

RESUMEN

Long non-coding (lnc) RNAs serve crucial functions in human cancers. However, the involvement of the lncRNA B4GALT1-antisense RNA 1 (AS1) in non-small cell lung cancer (NSCLC) has not been extensively studied. Reverse transcription-quantitative PCR was performed to detect B4GALT1-AS1 levels in NSCLC tissues and cell lines. Potential influences of B4GALT1-AS1 on biological functions of NSCLC were assessed through a series of in vitro experiments, and the molecular mechanism was determined via RNA immunoprecipitation (RIP) and bioinformatics analyses. The results of the present study demonstrated that knockdown of B4GALT1-AS1 significantly attenuated the proliferative ability and clonality of H1299 and A549 cells. In the present study, B4GALT1-AS1 competed as an endogenous RNA by sequestering microRNA-30e (miR-30e) leading to an enhanced expression of SRY-box transcription factor 9 (SOX9). The effects of silencing B4GALT1-AS1 on NSCLC cells proliferation could be ameliorated by inhibiting miR-30e or restoring SOX9. Hence, B4GALT1-AS1 acted as a lncRNA that drives tumor progression in NSCLC via the regulation of the miR-30e/SOX9 axis. The findings of the present study indicated that the B4GALT1-AS1/miR-30e/SOX9 axis maybe an effective target for NSCLC treatment and management.

4.
Oncol Lett ; 20(1): 299-307, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32565956

RESUMEN

Previous studies reported a dysregulation of micro (mi)R-208b-5p expression level in various types of human cancer; however, the role of miR-208-5p in non-small cell lung cancer (NSCLC) remains unclear. Therefore, the present study aimed to determine whether miR-208b-5p could regulate NSCLC progression. A total of 62 pairs of primary tumor and adjacent normal tissues were collected from patients with NSCLC. miR-208b-5p expression level was determined by reverse transcription-quantitative polymerase chain reaction. Furthermore, miR-208b-5p mimics was transfected into NSCLC A549 and H1299 cells in order to upregulate miR-208b-5p expression. Dual-luciferase reporter assay was utilized to investigate the associations between miR-208b-5p and IL9 mRNA. The results demonstrated that miR-208b-5p expression decreased in NSCLC tissues and cell lines. Furthermore, miR-208b-5p overexpression inhibited A549 and H1299 cell proliferation and invasiveness. miR-208b-5p was demonstrated to bind directly to the 3' untranslated region of interleukin-9 (IL-9) and therefore decreased its expression. In the NSCLC-derived cell lines, miR-208b-5p inactivated IL-9/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Furthermore, enhanced IL-9 level decreased the miR-208b-5p-mediated suppression of epithelial-mesenchymal transition in NSCLC cells by inactivating the STAT3 signaling pathway. In conclusion, the findings from this study demonstrated that miR-208b-5p inhibited migration and invasion of NSCLC cells. The anti-tumor activity of miR-208b-5p may be mediated by IL-9 and STAT-3 pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA