Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Int J Low Extrem Wounds ; : 15347346241258528, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839257

RESUMEN

Aims: The objective was to examine the efficacy of autologous platelet-rich gel (APG) in treating diabetic wound and investigate the association between APG and ferritinophagy. Methods: A total of 32 patients with diabetic foot (DF) and Wagner grade 1 to 2 were included. Within the APG group, individuals with DF received weekly APG treatment. In the non-APG group, DF patients received daily dressing changes. Flow cytometry quantified the proportion of endothelial progenitor cells (EPCs) in peripheral blood on days 0 and 10. The diabetic rat model was induced using Streptozotocin. Two circular skin wounds were created on the backs of rats. The normal glucose group received daily dressing changes on the wound. In the diabetic group, the left wound underwent daily dressing changes, whereas the right wound was treated with APG once a week. CD34 levels were tested 7 days after the skin damage. The levels of glutathione peroxidase 4 (GPX4), Nuclear Receptor Coactivator 4 (NCOA4), Light chain 3 (LC3), and Masson staining were quantified on 14 days. The wound area and wound healing rate were separately measured at 0 and 14 days after the injury, regardless of DF patients or diabetic rats. Results: The wound healing rate was higher in the APG group than in the non-APG group, regardless of DF patients or diabetic rats. The APG group had a greater ΔEPCs% in DF patients than the non-APG group. Regarding rat experiment, the APG group exhibited lower levels of NCOA4, and LC3 expressions and a shorter wound healing time. However, the APG group showed higher levels of CD34 expression, GPX4 protein, and collagen fibers than the non-APG group. Conclusions: Autologous platelet-rich gel accelerated the wound healing rate in diabetic populations and rats. Autologous platelet-rich gel promoted EPCs counts, collagen fiber volume, and vessel numbers. Autologous platelet-rich gel decreased LC3 and NCOA4 expression, but increased GPX4 protein expression. The possible mechanism was the inhibition of ferritinophagy.

2.
Nat Commun ; 15(1): 4643, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821959

RESUMEN

Silk nanofibrils (SNFs), the fundamental building blocks of silk fibers, endow them with exceptional properties. However, the intricate mechanism governing SNF assembly, a process involving both protein conformational transitions and protein molecule conjunctions, remains elusive. This lack of understanding has hindered the development of artificial silk spinning techniques. In this study, we address this challenge by employing a graphene plasmonic infrared sensor in conjunction with multi-scale molecular dynamics (MD). This unique approach allows us to probe the secondary structure of nanoscale assembly intermediates (0.8-6.2 nm) and their morphological evolution. It also provides insights into the dynamics of silk fibroin (SF) over extended molecular timeframes. Our novel findings reveal that amorphous SFs undergo a conformational transition towards ß-sheet-rich oligomers on graphene. These oligomers then connect to evolve into SNFs. These insights provide a comprehensive picture of SNF assembly, paving the way for advancements in biomimetic silk spinning.

3.
World J Gastroenterol ; 30(12): 1739-1750, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38617739

RESUMEN

BACKGROUND: The incidence of patients with early-onset pancreatic cancer (EOPC; age ≤ 50 years at diagnosis) is on the rise, placing a heavy burden on individuals, families, and society. The role of combination therapy including surgery, radiotherapy, and chemotherapy in non-metastatic EOPC is not well-defined. AIM: To investigate the treatment patterns and survival outcomes in patients with non-metastatic EOPC. METHODS: A total of 277 patients with non-metastatic EOPC who were treated at our institution between 2017 and 2021 were investigated retrospectively. Overall survival (OS), disease-free survival, and progression-free survival were estimated using the Kaplan-Meier method. Univariate and multivariate analyses with the Cox proportional hazards model were used to identify prognostic factors. RESULTS: With a median follow-up time of 34.6 months, the 1-year, 2-year, and 3-year OS rates for the entire cohort were 84.3%, 51.5%, and 27.6%, respectively. The median OS of patients with localized disease who received surgery alone and adjuvant therapy (AT) were 21.2 months and 28.8 months, respectively (P = 0.007). The median OS of patients with locally advanced disease who received radiotherapy-based combination therapy (RCT), surgery after neoadjuvant therapy (NAT), and chemotherapy were 28.5 months, 25.6 months, and 14.0 months, respectively (P = 0.002). The median OS after regional recurrence were 16.0 months, 13.4 months, and 8.9 months in the RCT, chemotherapy, and supportive therapy groups, respectively (P = 0.035). Multivariate analysis demonstrated that carbohydrate antigen 19-9 level, pathological grade, T-stage, N-stage, and resection were independent prognostic factors for non-metastatic EOPC. CONCLUSION: AT improves postoperative survival in localized patients. Surgery after NAT and RCT are the preferred therapeutic options for patients with locally advanced EOPC.


Asunto(s)
Antígeno CA-19-9 , Neoplasias Pancreáticas , Humanos , Persona de Mediana Edad , Terapia Combinada , Supervivencia sin Enfermedad , Análisis Multivariante , Neoplasias Pancreáticas/terapia
4.
Ecotoxicol Environ Saf ; 275: 116286, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38564864

RESUMEN

Pneumoconiosis is one of the most serious occupational diseases worldwide. Silicosis due to prolonged inhalation of free silica dust during occupational activities is one of the main types. Cuproptosis is a newly discovered mode of programmed cell death characterized by the accumulation of free copper in the cell, which ultimately leads to cell death. Increased copper in the serum of silicosis patients, suggests that the development of silicosis is accompanied by changes in copper metabolism, but whether cuproptosis is involved in the progression of silicosis is actually to be determined. To test this hypothesis, we screened the genetic changes in patients with idiopathic fibrosis by bioinformatics methods and predicted and functionally annotated the cuproptosis-related genes among them. Subsequently, we established a mouse silicosis model and detected the concentration of copper ions and the activity of ceruloplasmin (CP) in serum, as well as changes of the concentration of copper and cuproptosis related genes in mouse lung tissues. We identified 9 cuproptosis-related genes among the differential genes in patients with IPF at different times and the tissue-specific expression levels of ferredoxin 1 (FDX1) and Lipoyl synthase (LIAS) proteins. Furthermore, serum CP activity and copper ion levels in silicosis mice were elevated on days 7th and 56th after silica exposure. The expression of CP in mouse lung tissue elevated at all stages after silica exposure. The mRNA level of FDX1 decreased on days 7th and 56th, and the protein level remained in accordance with the mRNA level on day 56th. LIAS and Dihydrolipoamide dehydrogenase (DLD) levels were downregulated at all times after silica exposure. In addition, Heatshockprotein70 (HSP70) expression was increased on day 56. In brief, our results demonstrate that there may be cellular cuproptosis during the development of experimental silicosis in mice and show synchronization with enhanced copper loading in mice.


Asunto(s)
Cobre , Silicosis , Humanos , Animales , Ratones , Cobre/toxicidad , Silicosis/genética , Apoptosis , Biología Computacional , Modelos Animales de Enfermedad , ARN Mensajero , Dióxido de Silicio/toxicidad
5.
Front Public Health ; 12: 1368752, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38496386

RESUMEN

Aims: The present study aims to explore the relations between symptoms of depression and anxiety and self-efficacy among people with diabetes. At the same time, we also examined the sex difference between network structures. Methods: This study recruited 413 participants with diabetes, and they completed Generalized Anxiety Disorder Scale (GAD-7), Patient Health Questionnaire (PHQ-9), and the Self-efficacy for Diabetes (SED). Symptom network analysis and network comparison test were used to construct and compare the depression-anxiety symptom network models of the female and male groups. Finally, we conducted flow diagrams to explore the symptoms directly or indirectly related to self-efficacy. Results: The strongest edges in the depression-anxiety symptom networks are the edge between "GAD3" (Excessive worry) and "GAD4" (Trouble relaxing) and the edge between "PHQ1" (Anhedonia) and "PHQ4" (Energy) in the female and male groups, respectively. Most of the symptoms with the highest EI and bridge EI are related to worry and nervousness. Additionally, in the flow diagram of the female group, "PHQ6" (Guilt) has a high negative association with self-efficacy. Conclusion: Females with diabetes are more vulnerable to depression and anxiety. Interventions targeting key symptoms in the network may be helpful in relieving the psychological problems among people with diabetes.


Asunto(s)
Depresión , Diabetes Mellitus , Humanos , Femenino , Masculino , Depresión/psicología , Autoeficacia , Caracteres Sexuales , Ansiedad/psicología , Diabetes Mellitus/epidemiología
7.
Nat Mater ; 23(4): 506-511, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38191633

RESUMEN

Surface plasmon polaritons and phonon polaritons offer a means of surpassing the diffraction limit of conventional optics and facilitate efficient energy storage, local field enhancement and highsensitivity sensing, benefiting from their subwavelength confinement of light. Unfortunately, losses severely limit the propagation decay length, thus restricting the practical use of polaritons. While optimizing the fabrication technique can help circumvent the scattering loss of imperfect structures, the intrinsic absorption channel leading to heat production cannot be eliminated. Here, we utilize synthetic optical excitation of complex frequency with virtual gain, synthesized by combining the measurements made at multiple real frequencies, to compensate losses in the propagations of phonon polaritons with dramatically enhanced propagation distance. The concept of synthetic complex frequency excitation represents a viable solution to the loss problem for various applications including photonic circuits, waveguiding and plasmonic/phononic structured illumination microscopy.

8.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37958878

RESUMEN

The function of endometrial epithelial cells is to secrete various substances that are rich in growth factors and nutrients. These substances support both embryo implantation and its subsequent development into a fetus. A vast number of mucins are expressed in endometrial epithelial cells, and they play an important role in regulating the processes of embryo implantation, pregnancy, and parturition. Previous studies have shown that mucin forms a mucus layer covering endometrial epithelial cells, which helps resist damage from foreign bacteria and their toxins. Therefore, this article aims to investigate the location of mucins in the endometrium, the mechanism of mucin secretion by the endometrium, and the regulation of mucins in the uterine epithelium by reproductive hormones, as well as the role of mucins in the protection of the epithelium's structure. This research aims to provide a foundational understanding for future studies on the role and mechanism of endometrial mucins throughout the pregnancy cycle.


Asunto(s)
Mucinas , Útero , Embarazo , Femenino , Humanos , Mucinas/metabolismo , Útero/fisiología , Endometrio/metabolismo , Mucina-1/metabolismo , Implantación del Embrión/fisiología , Células Epiteliales
9.
Ecotoxicol Environ Saf ; 264: 115448, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37696080

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a common diarrheal pathogen in humans and animals. To prevent and treat ETEC induced diarrhea, we synthesized mannan oligosaccharide selenium (MOSS) and studied its beneficial effect on ETEC-induced diarrhea. A total of 32 healthy weaned piglets (6.69 ± 0.01 kg) were randomly divided into four groups: NC group (Basal diet), MOSS group (0.4 mg/kg MOSS supplemented diet), MOET group (0.4 mg/kg MOSS supplemented diet + ETEC treatment), ETEC group (ETEC treatment). NC and ETEC group fed with basal diet, MOSS and MOET group fed with the MOSS supplemented diet. On the 8th and 15th day of the experiment, MOET and ETEC group were gavaged with ETEC, and NC and MOSS group were gavaged with stroke-physiological saline solution. Our data showed that dietary MOSS supplementation increased average daily gain (ADG) and average daily feed intake (ADFI) and significantly decreased diarrhea index and frequency in ETEC-treated piglets. MOSS did not affect the α diversity and ß diversity of ileal microbial community, but it significantly decreased the proportion of lipopolysaccharide biosynthesis in ileal microbial community. MOSS supplementation regulated colonic microbiota community composition, which significantly increased carbohydrate metabolism, and inhibited lipopolysaccharide biosynthesis pathway in colonic microbial community. Moreover, MOSS significantly decreased inflammatory stress, and oxidative stress in ETEC treated piglets. Furthermore, dietary MOSS supplementation significantly decreased intestinal barrier permeability, and alleviated ETEC induced intestinal mucosa barrier irritation. In conclusion, our study showed that dietary MOSS supplementation ameliorated intestinal mucosa barrier, and regulated intestinal microbiota to prevent ETEC induced diarrhea in weaned piglets.


Asunto(s)
Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Microbioma Gastrointestinal , Selenio , Animales , Diarrea/prevención & control , Diarrea/veterinaria , Infecciones por Escherichia coli/prevención & control , Infecciones por Escherichia coli/veterinaria , Mucosa Intestinal , Lipopolisacáridos , Mananos/farmacología , Mananos/uso terapéutico , Selenio/farmacología , Porcinos
10.
J Agric Food Chem ; 71(29): 11131-11140, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37439413

RESUMEN

l-Lactic acid (l-LA) is a platform chemical obtained via microbial fermentation at a near-neutral pH value. Large amounts of neutralizers are required during this process, which increases the production costs in downstream processing as well as environmental burden. To address this challenge, an acid-tolerant yeast Pichia kudriavzevii E1 was isolated and metabolically engineered to produce l-LA without neutralizers. The genome of strain E1 was sequenced and a CRISPR-Cas9 system was developed in this newly isolated strain. Subsequently, the gene encoding pyruvate decarboxylase (pdc) was knocked out to subdue ethanol formation. Furthermore, the l-lactate dehydrogenase gene from Weizmannia coagulans 2-6 and the codon-optimized L-ldhA gene from Bos taurus were introduced into P. kudriavzevii E1 chromosome to redirect the ethanol fermentation pathway to l-LA production. Deletion of the dld(chr3) gene further increased the optical purity of l-LA. After optimizing fermentation conditions, the maximum titer of l-LA in the 5 L fermenter reached 74.57 g/L without any neutralizers, with an optical purity of 100% and a maximum yield of 0.93 g/g glucose. This is the first report of optically pure l-LA production without neutralizers and the engineered acid-tolerant yeast paves the way for the sustainable production of l-LA via a green route.


Asunto(s)
Ácido Láctico , Saccharomyces cerevisiae , Animales , Bovinos , Saccharomyces cerevisiae/metabolismo , Ácido Láctico/metabolismo , Ácidos/metabolismo , Pichia/genética , Pichia/metabolismo , Fermentación , Etanol/metabolismo
11.
J Transl Med ; 21(1): 365, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280614

RESUMEN

BACKGROUND: Silica-induced pulmonary fibrosis (silicosis) is a diffuse interstitial fibrotic disease characterized by the massive deposition of extracellular matrix in lung tissue. Fibroblast to myofibroblast differentiation is crucial for the disease progression. Inhibiting myofibroblast differentiation may be an effective way for pulmonary fibrosis treatment. METHODS: The experiments were conducted in TGF-ß treated human lung fibroblasts to induce myofibroblast differentiation in vitro and silica treated mice to induce pulmonary fibrosis in vivo. RESULTS: By quantitative mass spectrometry, we revealed that proteins involved in mitochondrial folate metabolism were specifically upregulated during myofibroblast differentiation following TGF-ß stimulation. The expression level of proteins in mitochondrial folate pathway, MTHFD2 and SLC25A32, negatively regulated myofibroblast differentiation. Moreover, plasma folate concentration was significantly reduced in patients and mice with silicosis. Folate supplementation elevated the expression of MTHFD2 and SLC25A32, alleviated oxidative stress and effectively suppressed myofibroblast differentiation and silica-induced pulmonary fibrosis in mice. CONCLUSION: Our study suggests that mitochondrial folate pathway regulates myofibroblast differentiation and could serve as a potential target for ameliorating silica-induced pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Silicosis , Humanos , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Miofibroblastos , Dióxido de Silicio/toxicidad , Pulmón/patología , Fibroblastos/metabolismo , Silicosis/metabolismo , Silicosis/patología , Factor de Crecimiento Transformador beta/metabolismo , Diferenciación Celular , Ratones Endogámicos C57BL
12.
Brain Dev ; 45(9): 495-504, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37302973

RESUMEN

INTRODUCTION: Although the whole-exome sequencing (WES) approach has been widely used in clinic, many rare diseases with syndromic and nonsyndromic neurological manifestations remain undiagnosed. Coffin-Siris syndrome (CSS) is a rare autosomal dominant genetic disease characterized by neurodevelopmental delay. A suspected diagnosis can be made based on the typical CSS clinical features; however, molecular genetic testing is necessary for a confirmed diagnosis. OBJECTIVES: Three CSS-like patients with negative results in the WES and chromosomal microarray analysis (CMA) were recruited in this study. METHODS: We used whole-genome sequencing (WGS) technology to sequence the peripheral blood of the three families. To further explore the possible pathogenesis of CSS, we performed RNA-sequencing (RNA-seq). RESULTS: WGS identified the three CSS patients were carrying de novo copy number variants of the ARID1B gene, which have not been reported before. RNA-seq identified 184 differentially expressed genes (DEGs), with 116 up-regulated and 68 down-regulated. Functional annotation of DEGs showed that two biological processes (immune response, chemokine activity) and two signaling pathways (cytokine-cytokine receptor interaction, chemokine activity) were highlighted. We speculated that ARID1B deficiency might trigger abnormal immune responses, which may be involved in the pathophysiologic mechanisms of CSS. CONCLUSION: Our research provided further support for WGS application in CSS diagnosis and made an investigational approach for the underlying mechanisms of CSS.


Asunto(s)
Deformidades Congénitas de la Mano , Discapacidad Intelectual , Micrognatismo , Humanos , Proteínas de Unión al ADN/genética , Transcriptoma/genética , Factores de Transcripción/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Micrognatismo/diagnóstico , Micrognatismo/genética , Micrognatismo/patología , Deformidades Congénitas de la Mano/diagnóstico , Deformidades Congénitas de la Mano/genética , Deformidades Congénitas de la Mano/terapia , Cuello/patología , Quimiocinas
13.
R Soc Open Sci ; 10(5): 221277, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37181796

RESUMEN

For an infectious disease such as COVID-19, we present a new four-stage vaccination model (unvaccinated, dose 1 + 2, booster, repeated boosters), which examines the impact of vaccination coverage, vaccination rate, generation interval, control reproduction number, vaccine efficacies and rates of waning immunity upon the dynamics of infection. We derive a single equation that allows computation of equilibrium prevalence and incidence of infection, given knowledge about these parameters and variable values. Based upon a 20-compartment model, we develop a numerical simulation of the associated differential equations. The model is not a forecasting or even predictive one, given the uncertainty about several biological parameter values. Rather, it is intended to aid a qualitative understanding of how equilibrium levels of infection may be impacted upon, by the parameters of the system. We examine one-at-a-time sensitivity analysis around a base case scenario. The key finding which should be of interest to policymakers is that while factors such as improved vaccine efficacy, increased vaccination rates, lower waning rates and more stringent non-pharmaceutical interventions might be thought to improve equilibrium levels of infection, this might only be done to good effect if vaccination coverage on a recurrent basis is sufficiently high.

14.
Cancers (Basel) ; 15(8)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37190142

RESUMEN

This study investigated the long-term results, failure patterns, and prognostic factors of patients with initially inoperable non-metastatic pancreatic cancer (PC) receiving definitive radiotherapy (RT). Between January 2016 and December 2020, a total of 168 non-metastatic PC patients, who were surgically unresectable or medically inoperable, were enrolled to receive definitive RT, with or without chemotherapy. Overall survival (OS) and progression-free survival (PFS) were evaluated using the Kaplan-Meier method with a log-rank test. The cumulative incidence of locoregional and distant progression was estimated using the competing risks model. The Cox proportional-hazards model was used to determine the influence of prognostic variables on OS. With a median follow-up of 20.2 months, the median OS (mOS) and median PFS (mPFS) from diagnosis were 18.0 months [95% confidence interval (CI), 16.5-21.7 months] and 12.3 months (95% CI, 10.2-14.3 months), respectively. The mOS and mPFS from RT were 14.3 months (95% CI, 12.7-18.3 months) and 7.7 months (95% CI, 5.5-12.0 months), respectively. The corresponding 1-year, 2-year, and 3-year OS from diagnosis and RT were 72.1%, 36.6%, and 21.5% as well as 59.0%, 28.8%, and 19.0%, respectively. In a multivariate analysis, stage I-II (p = 0.032), pre-RT CA19-9 ≤ 130 U/mL (p = 0.011), receiving chemotherapy (p = 0.003), and a biologically effective dose (BED10) > 80 Gy (p = 0.014) showed a significant favorable influence on OS. Among the 59 available patients with definite progression sites, the recurrences of local, regional, and distant progression were 33.9% (20/59), 18.6% (11/59), and 59.3% (35/59), respectively. The 1-year and 2-year cumulative incidences of locoregional progression after RT were 19.5% (95% CI, 11.5-27.5%) and 32.8% (95% CI, 20.8-44.8%), respectively. Definitive RT was associated with long-term primary tumor control, resulting in superior survival in patients with inoperable non-metastatic PC. Further prospective randomized trials are warranted to validate our results in these patients.

15.
Adv Mater ; 35(29): e2210766, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37143434

RESUMEN

Drug-resistant bacteria and biofilm-associated infections are prominent problems in the field of antibacterial medicine, seriously affecting human and animal health. Despite the great potential of nanomaterials in the antibacterial field, overcoming the paradox of size and charge, efficient penetration, and retention within biofilms remain a formidable challenge. Here, self-assembling chimeric peptide nanoassemblies composed of multiple functional fragments are designed for the treatment of drug-resistant bacteria and biofilm-associated infections. Notably, the chimeric peptide self-assembles into nanofibers at pH 7.4 and is transformable into nanoparticles in the acidic biofilm-infected microenvironment at pH 5.0, and thus achieves a size reduction and charge increase, improving the penetration into the bacterial biofilms and killing drug-resistant bacteria by a mechanism dominated by membrane cleavage. In vivo mouse and piglet infection models confirm the ability of chimeric peptide nanoassemblies to reduce bacterial load within biofilms. Collectively, this research on pathological-environment-driven nanostructural transformations may provide a theoretical basis for designing high-performance antibacterial nanomaterials and advance the application of peptide-based nanomaterials in medicine and animal husbandry.


Asunto(s)
Antibacterianos , Bacterias , Porcinos , Ratones , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Péptidos/farmacología , Biopelículas , Concentración de Iones de Hidrógeno
16.
Nat Commun ; 14(1): 2532, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137873

RESUMEN

Cherenkov radiation (CR) excited by fast charges can serve as on-chip light sources with a nanoscale footprint and broad frequency range. The reversed CR, which usually occurs in media with the negative refractive index or negative group-velocity dispersion, is highly desired because it can effectively separate the radiated light from fast charges thanks to the obtuse radiation angle. However, reversed CR at the mid-infrared remains challenging due to the significant loss of conventional artificial structures. Here we observe mid-infrared analogue polaritonic reversed CR in a natural van der Waals (vdW) material (i.e., α-MoO3), whose hyperbolic phonon polaritons exhibit negative group velocity. Further, the real-space image results of analogue polaritonic reversed CR indicate that the radiation distributions and angles are closely related to the in-plane isofrequency contours of α-MoO3, which can be further tuned in the heterostructures based on α-MoO3. This work demonstrates that natural vdW heterostructures can be used as a promising platform of reversed CR to design on-chip mid-infrared nano-light sources.

17.
J Ovarian Res ; 16(1): 75, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37059991

RESUMEN

BACKGROUND: Epithelial ovarian cancer (EOC) is one of the most fatal gynecological malignancies among elderly patients. We aim to construct two nomograms to predict the overall survival (OS) and cancer-specific survival (CSS) in elderly EOC patients. METHODS: Elderly patients with EOC between 2000 and 2019 were selected from the Surveillance, Epidemiology, and End Results (SEER) database. Enrolled patients were randomly divided into the training and validation set at a ratio of 2:1. The OS and CSS were recognized as endpoint times. The independent prognostic factors from the multivariate analysis were used to establish nomograms for predicting the 3-, 5- and 10-year OS and CSS of elderly EOC patients. The improvement of predictive ability and clinical benefits were evaluated by consistency index (C-index), receiver operating characteristic (ROC), calibration curve, decision curve (DCA), net reclassification improvement (NRI), and integrated discrimination improvement (IDI). Finally, the treatment efficacy of surgery and chemotherapy in low-, medium-, and high-risk groups were displayed by Kaplan-Meier curves. RESULTS: Five thousand five hundred eighty-eight elderly EOC patients were obtained and randomly assigned to the training set (n = 3724) and validation set (n = 1864). The independent prognostic factors were utilized to construct nomograms for OS and CSS. Dynamic nomograms were also developed. The C-index of the OS nomogram and CSS nomogram were 0.713 and 0.729 in the training cohort. In the validation cohort, the C-index of the OS nomogram and CSS nomogram were 0.751 and 0.702. The calibration curve demonstrated good concordance between the predicted survival rates and actual observations. Moreover, the NRI, IDI, and DCA curves determined the outperformance of the nomogram compared with the AJCC stage system. Besides, local tumor resection had a higher benefit on the prognosis in all patients. Chemotherapy had a better prognosis in the high-risk groups, but not for the medium- risk and low-risk groups. CONCLUSIONS: We developed and validated nomograms for predicting OS and CSS in elderly EOC patients to help gynecologists to develop an appropriate individualized therapeutic schedule.


Asunto(s)
Nomogramas , Neoplasias Ováricas , Anciano , Femenino , Humanos , Carcinoma Epitelial de Ovario/terapia , Bases de Datos Factuales , Ginecólogos , Neoplasias Ováricas/terapia , Pronóstico
18.
Food Chem ; 419: 136088, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023675

RESUMEN

The effects of postharvest melatonin treatment on antioxidant activity and γ-aminobutyric acid (GABA) biosynthesis in yellow-flesh peach fruit stored at 4 °C and 90% RH for 28 d were explored. Results showed that melatonin treatment was effective in maintaining firmness, total soluble solids content and color in peach fruit. Melatonin treatment significantly reduced H2O2 and MDA contents, enhanced high level of non-enzymatic antioxidant system (ABTS∙+ scavenging capacity), and increased the activity or content of antioxidant enzymes including CAT, POD, SOD and APX. Melatonin treatment increased the contents of total soluble protein and glutamate, while reducing total free amino acid content. Moreover, melatonin treatment up-regulated the expression of GABA biosynthesis genes (PpGAD1 and PpGAD4) and suppressed the expression of GABA degradation gene (PpGABA-T), resulting in the accumulation of endogenous GABA. These findings indicated that melatonin treatment exerted positive effects on improving antioxidant activity and promoting GABA biosynthesis in yellow-flesh peach fruit.


Asunto(s)
Melatonina , Prunus persica , Antioxidantes/análisis , Melatonina/farmacología , Prunus persica/química , Peróxido de Hidrógeno/metabolismo , Ácido gamma-Aminobutírico/análisis , Frutas/química
20.
Polymers (Basel) ; 15(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36772013

RESUMEN

Polymer composites have been widely used in the aviation, aerospace, automotive, military, medical, agricultural and industrial fields due to their excellent mechanical properties, heat resistance, flame retardant, impact resistance and corrosion resistance. In general, their manufacturing process is one of the key factors affecting the life cycle of polymer composites. This article provides an overview of typical manufacturing technologies, including surface coating, additive manufacturing and magnetic pulse powder compaction, which are normally used to reduce the failure behaviour of polymer composites in service so that the quality of composite products can be improved. Advanced polymer composite powder manufacturing processes, the processing mechanism and experimental methods are described, and the influence of different manufacturing processes on the moulding quality is revealed. This investigation can provide suitable methods for the selection of manufacturing technology to improve the quality of polymer composite products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...