Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Med Imaging (Bellingham) ; 11(2): 024002, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463607

RESUMEN

Purpose: Validation of quantitative imaging biomarkers is a challenging task, due to the difficulty in measuring the ground truth of the target biological process. A digital phantom-based framework is established to systematically validate the quantitative characterization of tumor-associated vascular morphology and hemodynamics based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Approach: A digital phantom is employed to provide a ground-truth vascular system within which 45 synthetic tumors are simulated. Morphological analysis is performed on high-spatial resolution DCE-MRI data (spatial/temporal resolution = 30 to 300 µm/60 s) to determine the accuracy of locating the arterial inputs of tumor-associated vessels (TAVs). Hemodynamic analysis is then performed on the combination of high-spatial resolution and high-temporal resolution (spatial/temporal resolution = 60 to 300 µm/1 to 10 s) DCE-MRI data, determining the accuracy of estimating tumor-associated blood pressure, vascular extraction rate, interstitial pressure, and interstitial flow velocity. Results: The observed effects of acquisition settings demonstrate that, when optimizing the DCE-MRI protocol for the morphological analysis, increasing the spatial resolution is helpful but not necessary, as the location and arterial input of TAVs can be recovered with high accuracy even with the lowest investigated spatial resolution. When optimizing the DCE-MRI protocol for hemodynamic analysis, increasing the spatial resolution of the images used for vessel segmentation is essential, and the spatial and temporal resolutions of the images used for the kinetic parameter fitting require simultaneous optimization. Conclusion: An in silico validation framework was generated to systematically quantify the effects of image acquisition settings on the ability to accurately estimate tumor-associated characteristics.

2.
Arch Insect Biochem Physiol ; 115(1): e22082, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288492

RESUMEN

Bombyx mori bidensovirus (BmBDV) is one of the most important pathogens of silkworm. It mainly infects midgut cells of silkworm and causes losses to the sericulture industry. Long noncoding RNAs (lncRNAs) have been reported to play an important role in the regulation of antiviral immune response in silkworm. To explore whether lncRNAs are involved in BmBDV infection and immune response of silkworm, we performed a comparative transcriptome analysis to identify the lncRNAs and mRNAs between the BmBDV infected and noninfected silkworm larvae at the early stage. A total of 16,069 genes and 974 candidate lncRNAs were identified, among which 142 messenger RNA (mRNAs) and four lncRNAs were differentially expressed (DE). Target gene prediction revealed that 142 DEmRNAs were coexpressed with four DElncRNAs, suggesting that the expression of mRNA is mainly affected through trans-regulation activities. A regulatory network of DElncRNAs and DEmRNAs was constructed, showing that many genes targeted by different DElncRNAs are involved in metabolism and immunity, which implies that these genes and lncRNAs play an important role in the replication of BmBDV. Our results will help us to improve our understanding of lncRNA-mediated regulatory roles in BmBDV infection, providing a new perspective for further exploring the interaction between host and BmBDV.


Asunto(s)
Bombyx , Virus de Insectos , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , Virus de Insectos/genética , Perfilación de la Expresión Génica
3.
iScience ; 27(1): 108589, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38169893

RESUMEN

The heterogeneity inherent in cancer means that even a successful clinical trial merely results in a therapeutic regimen that achieves, on average, a positive result only in a subset of patients. The only way to optimize an intervention for an individual patient is to reframe their treatment as their own, personalized trial. Toward this goal, we formulate a computational framework for performing personalized trials that rely on four mathematical techniques. First, mathematical models that can be calibrated with patient-specific data to make accurate predictions of response. Second, digital twins built on these models capable of simulating the effects of interventions. Third, optimal control theory applied to the digital twins to optimize outcomes. Fourth, data assimilation to continually update and refine predictions in response to therapeutic interventions. In this perspective, we describe each of these techniques, quantify their "state of readiness", and identify use cases for personalized clinical trials.

4.
BMC Musculoskelet Disord ; 24(1): 975, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-38104094

RESUMEN

BACKGROUND: The forearm/wrist squeeze/compression test has been used to examine digital flexor tendon injuries with varied names. Furthermore, the test has not been minutely described and its mechanism remains unclear. We renamed the test the "distal forearm squeeze test". The purpose of this study was to elaborate on the test and elucidate the mechanism. METHODS: Two patients with digital flexor tendons ruptured in zone 3 and zone 1 respectively and 50 outpatients with intact digital tendons underwent the test. Then the test was performed on 3 chickens under 4 conditions. First, when the digital flexor and extensor tendons were all intact. Second, after the flexor tendons of the third toe were transected. Third, after the flexor tendons of all toes of the foot were transected. Finally, after the flexor and extensor tendons of all toes of the foot were transected. RESULTS: In the patient with digital flexor tendons ruptured in zone 3, the test showed that the injured digit was flexed slightly while the uninjured digits were flexed obviously. In the patient with digital flexor tendon ruptured in zone 1, after separate stabilization of the proximal interphalangeal (PIP) joints of the injured and uninjured fingers in extension, the test showed that the distal interphalangeal joint of the patient's injured finger had no response, while those of the uninjured fingers were flexed. All 50 subjects showed clenched or half-clenched hands in response to the test. The test showed that all toes were flexed when the digital tendons of the chicken were intact. All toes were flexed except the third toe after the flexor tendons of the third toe were transected. All toes were extended after all the digital flexor tendons were transected. All toes had no response after all the digital flexor and extensor tendons were transected. CONCLUSIONS: The distal forearm squeeze test is valuable in examining digital flexor tendon injuries. If only the flexor digitorum profundus tendon is examined, the PIP joint of the finger should be stabilized in extension during the test.


Asunto(s)
Traumatismos de los Dedos , Traumatismos de los Tendones , Humanos , Animales , Muñeca , Antebrazo , Pollos , Tendones/fisiología , Traumatismos de los Tendones/diagnóstico , Traumatismos de los Tendones/cirugía
5.
Front Artif Intell ; 6: 1222612, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886348

RESUMEN

We develop a methodology to create data-driven predictive digital twins for optimal risk-aware clinical decision-making. We illustrate the methodology as an enabler for an anticipatory personalized treatment that accounts for uncertainties in the underlying tumor biology in high-grade gliomas, where heterogeneity in the response to standard-of-care (SOC) radiotherapy contributes to sub-optimal patient outcomes. The digital twin is initialized through prior distributions derived from population-level clinical data in the literature for a mechanistic model's parameters. Then the digital twin is personalized using Bayesian model calibration for assimilating patient-specific magnetic resonance imaging data. The calibrated digital twin is used to propose optimal radiotherapy treatment regimens by solving a multi-objective risk-based optimization under uncertainty problem. The solution leads to a suite of patient-specific optimal radiotherapy treatment regimens exhibiting varying levels of trade-off between the two competing clinical objectives: (i) maximizing tumor control (characterized by minimizing the risk of tumor volume growth) and (ii) minimizing the toxicity from radiotherapy. The proposed digital twin framework is illustrated by generating an in silico cohort of 100 patients with high-grade glioma growth and response properties typically observed in the literature. For the same total radiation dose as the SOC, the personalized treatment regimens lead to median increase in tumor time to progression of around six days. Alternatively, for the same level of tumor control as the SOC, the digital twin provides optimal treatment options that lead to a median reduction in radiation dose by 16.7% (10 Gy) compared to SOC total dose of 60 Gy. The range of optimal solutions also provide options with increased doses for patients with aggressive cancer, where SOC does not lead to sufficient tumor control.

6.
Patterns (N Y) ; 4(8): 100798, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37602215

RESUMEN

CCCTC-binding factor (CTCF) is a transcription regulator with a complex role in gene regulation. The recognition and effects of CTCF on DNA sequences, chromosome barriers, and enhancer blocking are not well understood. Existing computational tools struggle to assess the regulatory potential of CTCF-binding sites and their impact on chromatin loop formation. Here we have developed a deep-learning model, DeepAnchor, to accurately characterize CTCF binding using high-resolution genomic/epigenomic features. This has revealed distinct chromatin and sequence patterns for CTCF-mediated insulation and looping. An optimized implementation of a previous loop model based on DeepAnchor score excels in predicting CTCF-anchored loops. We have established a compendium of CTCF-anchored loops across 52 human tissue/cell types, and this suggests that genomic disruption of these loops could be a general mechanism of disease pathogenesis. These computational models and resources can help investigate how CTCF-mediated cis-regulatory elements shape context-specific gene regulation in cell development and disease progression.

7.
Magn Reson Med ; 89(4): 1617-1633, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36468624

RESUMEN

PURPOSE: To implement physics-based regularization as a stopping condition in tuning an untrained deep neural network for reconstructing MR images from accelerated data. METHODS: The ConvDecoder (CD) neural network was trained with a physics-based regularization term incorporating the spoiled gradient echo equation that describes variable-flip angle data. Fully-sampled variable-flip angle k-space data were retrospectively accelerated by factors of R = {8, 12, 18, 36} and reconstructed with CD, CD with the proposed regularization (CD + r), locally low-rank (LR) reconstruction, and compressed sensing with L1-wavelet regularization (L1). Final images from CD + r training were evaluated at the "argmin" of the regularization loss; whereas the CD, LR, and L1 reconstructions were chosen optimally based on ground truth data. The performance measures used were the normalized RMS error, the concordance correlation coefficient, and the structural similarity index. RESULTS: The CD + r reconstructions, chosen using the stopping condition, yielded structural similarity indexs that were similar to the CD (p = 0.47) and LR structural similarity indexs (p = 0.95) across R and that were significantly higher than the L1 structural similarity indexs (p = 0.04). The concordance correlation coefficient values for the CD + r T1 maps across all R and subjects were greater than those corresponding to the L1 (p = 0.15) and LR (p = 0.13) T1 maps, respectively. For R ≥ 12 (≤4.2 min scan time), L1 and LR T1 maps exhibit a loss of spatially refined details compared to CD + r. CONCLUSION: The use of an untrained neural network together with a physics-based regularization loss shows promise as a measure for determining the optimal stopping point in training without relying on fully-sampled ground truth data.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación
8.
Brain Multiphys ; 52023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38187909

RESUMEN

Rhenium-186 (186Re) labeled nanoliposome (RNL) therapy for recurrent glioblastoma patients has shown promise to improve outcomes by locally delivering radiation to affected areas. To optimize the delivery of RNL, we have developed a framework to predict patient-specific response to RNL using image-guided mathematical models. Methods: We calibrated a family of reaction-diffusion type models with multi-modality imaging data from ten patients (NCR01906385) to predict the spatio-temporal dynamics of each patient's tumor. The data consisted of longitudinal magnetic resonance imaging (MRI) and single photon emission computed tomography (SPECT) to estimate tumor burden and local RNL activity, respectively. The optimal model from the family was selected and used to predict future growth. A simplified version of the model was used in a leave-one-out analysis to predict the development of an individual patient's tumor, based on cohort parameters. Results: Across the cohort, predictions using patient-specific parameters with the selected model were able to achieve Spearman correlation coefficients (SCC) of 0.98 and 0.93 for tumor volume and total cell number, respectively, when compared to the measured data. Predictions utilizing the leave-one-out method achieved SCCs of 0.89 and 0.88 for volume and total cell number across the population, respectively. Conclusion: We have shown that patient-specific calibrations of a biology-based mathematical model can be used to make early predictions of response to RNL therapy. Furthermore, the leave-one-out framework indicates that radiation doses determined by SPECT can be used to assign model parameters to make predictions directly following the conclusion of RNL treatment. Statement of Significance: This manuscript explores the application of computational models to predict response to radionuclide therapy in glioblastoma. There are few, to our knowledge, examples of mathematical models used in clinical radionuclide therapy. We have tested a family of models to determine the applicability of different radiation coupling terms for response to the localized radiation delivery. We show that with patient-specific parameter estimation, we can make accurate predictions of future glioblastoma response to the treatment. As a comparison, we have shown that population trends in response can be used to forecast growth from the moment the treatment has been delivered.In addition to the high simulation and prediction accuracy our modeling methods have achieved, the evaluation of a family of models has given insight into the response dynamics of radionuclide therapy. These dynamics, while different than we had initially hypothesized, should encourage future imaging studies involving high dosage radiation treatments, with specific emphasis on the local immune and vascular response.

9.
Cancer Res ; 82(18): 3394-3404, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35914239

RESUMEN

Triple-negative breast cancer (TNBC) is persistently refractory to therapy, and methods to improve targeting and evaluation of responses to therapy in this disease are needed. Here, we integrate quantitative MRI data with biologically based mathematical modeling to accurately predict the response of TNBC to neoadjuvant systemic therapy (NAST) on an individual basis. Specifically, 56 patients with TNBC enrolled in the ARTEMIS trial (NCT02276443) underwent standard-of-care doxorubicin/cyclophosphamide (A/C) and then paclitaxel for NAST, where dynamic contrast-enhanced MRI and diffusion-weighted MRI were acquired before treatment and after two and four cycles of A/C. A biologically based model was established to characterize tumor cell movement, proliferation, and treatment-induced cell death. Two evaluation frameworks were investigated using: (i) images acquired before and after two cycles of A/C for calibration and predicting tumor status after A/C, and (ii) images acquired before, after two cycles, and after four cycles of A/C for calibration and predicting response following NAST. For Framework 1, the concordance correlation coefficients between the predicted and measured patient-specific, post-A/C changes in tumor cellularity and volume were 0.95 and 0.94, respectively. For Framework 2, the biologically based model achieved an area under the receiver operator characteristic curve of 0.89 (sensitivity/specificity = 0.72/0.95) for differentiating pathological complete response (pCR) from non-pCR, which is statistically superior (P < 0.05) to the value of 0.78 (sensitivity/specificity = 0.72/0.79) achieved by tumor volume measured after four cycles of A/C. Overall, this model successfully captured patient-specific, spatiotemporal dynamics of TNBC response to NAST, providing highly accurate predictions of NAST response. SIGNIFICANCE: Integrating MRI data with biologically based mathematical modeling successfully predicts breast cancer response to chemotherapy, suggesting digital twins could facilitate a paradigm shift from simply assessing response to predicting and optimizing therapeutic efficacy.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Ciclofosfamida/uso terapéutico , Doxorrubicina , Femenino , Humanos , Imagen por Resonancia Magnética , Terapia Neoadyuvante/métodos , Paclitaxel , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
10.
Biophys Rev (Melville) ; 3(2): 021304, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35602761

RESUMEN

Digital twins employ mathematical and computational models to virtually represent a physical object (e.g., planes and human organs), predict the behavior of the object, and enable decision-making to optimize the future behavior of the object. While digital twins have been widely used in engineering for decades, their applications to oncology are only just emerging. Due to advances in experimental techniques quantitatively characterizing cancer, as well as advances in the mathematical and computational sciences, the notion of building and applying digital twins to understand tumor dynamics and personalize the care of cancer patients has been increasingly appreciated. In this review, we present the opportunities and challenges of applying digital twins in clinical oncology, with a particular focus on integrating medical imaging with mechanism-based, tissue-scale mathematical modeling. Specifically, we first introduce the general digital twin framework and then illustrate existing applications of image-guided digital twins in healthcare. Next, we detail both the imaging and modeling techniques that provide practical opportunities to build patient-specific digital twins for oncology. We then describe the current challenges and limitations in developing image-guided, mechanism-based digital twins for oncology along with potential solutions. We conclude by outlining five fundamental questions that can serve as a roadmap when designing and building a practical digital twin for oncology and attempt to provide answers for a specific application to brain cancer. We hope that this contribution provides motivation for the imaging science, oncology, and computational communities to develop practical digital twin technologies to improve the care of patients battling cancer.

11.
Int J Numer Method Biomed Eng ; 38(7): e3612, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35522186

RESUMEN

In this work, we present mixed dimensional models for simulating blood flow and transport processes in breast tissue and the vascular tree supplying it. These processes are considered, to start from the aortic inlet to the capillaries and tissue of the breast. Large variations in biophysical properties and flow conditions exist in this system necessitating the use of different flow models for different geometries and flow regimes. In total, we consider four different model types. First, a system of 1D nonlinear hyperbolic partial differential equations (PDEs) is considered to simulate blood flow in larger arteries with highly elastic vessel walls. Second, we assign 1D linearized hyperbolic PDEs to model the smaller arteries with stiffer vessel walls. The third model type consists of ODE systems (0D models). It is used to model the arterioles and peripheral circulation. Finally, homogenized 3D porous media models are considered to simulate flow and transport in capillaries and tissue within the breast volume. Sink terms are used to account for the influence of the venous and lymphatic systems. Combining the four model types, we obtain two different 1D-0D-3D coupled models for simulating blood flow and transport processes: The first model results in a fully coupled 1D-0D-3D model covering the complete path from the aorta to the breast combining a generic arterial network with a patient specific breast network and geometry. The second model is a reduced one based on the separation of the generic and patient specific parts. The information from a calibrated fully coupled model is used as inflow condition for the patient specific sub-model allowing a significant computational cost reduction. Several numerical experiments are conducted to calibrate the generic model parameters and to demonstrate realistic flow simulations compared to existing data on blood flow in the human breast and vascular system. Moreover, we use two different breast vasculature and tissue data sets to illustrate the robustness of our reduced sub-model approach.


Asunto(s)
Arterias , Hemodinámica , Aorta , Arterias/fisiología , Humanos , Modelos Cardiovasculares
12.
IEEE Trans Biomed Eng ; 69(11): 3334-3344, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35439121

RESUMEN

OBJECTIVE: This study establishes a fluid dynamics model personalized with patient-specific imaging data to optimize neoadjuvant therapy (i.e., doxorubicin) protocols for breast cancers. METHODS: Ten patients recruited at the University of Chicago were included in this study. Quantitative dynamic contrast-enhanced and diffusion weighted magnetic resonance imaging data are leveraged to estimate patient-specific hemodynamic properties, which are then used to constrain the mechanism-based drug delivery model. Then, computer simulations of this model yield the subsequent drug distribution throughout the breast. By systematically varying the dosing schedule, we identify an optimized regimen for each patient using the maximum safe therapeutic duration (MSTD), which is a metric balancing treatment efficacy and toxicity. RESULTS: With an individually optimized dose (range = 12.11-15.11 mg/m2 per injection), a 3-week regimen consisting of a uniform daily injection significantly outperforms all other scheduling strategies (P < 0.001). In particular, the optimal protocol is predicted to significantly outperform the standard protocol (P < 0.001), improving the MSTD by an average factor of 9.93 (range = 6.63 to 14.17). CONCLUSION: A clinical-mathematical framework was developed by integrating quantitative MRI data, advanced image processing, and computational fluid dynamics to predict the efficacy and toxicity of neoadjuvant therapy protocols, thus enabling the rational identification of an optimal therapeutic regimen on a patient-specific basis. SIGNIFICANCE: Our clinical-computational approach has the potential to enable optimization of therapeutic regimens on a patient-specific basis and provide guidance for prospective clinical trials aimed at refining neoadjuvant therapy protocols for breast cancers.


Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Hidrodinámica , Estudios Prospectivos , Doxorrubicina/uso terapéutico , Resultado del Tratamiento
13.
Nat Protoc ; 16(11): 5309-5338, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34552262

RESUMEN

This protocol describes a complete data acquisition, analysis and computational forecasting pipeline for employing quantitative MRI data to predict the response of locally advanced breast cancer to neoadjuvant therapy in a community-based care setting. The methodology has previously been successfully applied to a heterogeneous patient population. The protocol details how to acquire the necessary images followed by registration, segmentation, quantitative perfusion and diffusion analysis, model calibration, and prediction. The data collection portion of the protocol requires ~25 min of scanning, postprocessing requires 2-3 h, and the model calibration and prediction components require ~10 h per patient depending on tumor size. The response of individual breast cancer patients to neoadjuvant therapy is forecast by application of a biophysical, reaction-diffusion mathematical model to these data. Successful application of the protocol results in coregistered MRI data from at least two scan visits that quantifies an individual tumor's size, cellularity and vascular properties. This enables a spatially resolved prediction of how a particular patient's tumor will respond to therapy. Expertise in image acquisition and analysis, as well as the numerical solution of partial differential equations, is required to carry out this protocol.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética
14.
Cancers (Basel) ; 13(12)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208448

RESUMEN

Tumor-associated vasculature is responsible for the delivery of nutrients, removal of waste, and allowing growth beyond 2-3 mm3. Additionally, the vascular network, which is changing in both space and time, fundamentally influences tumor response to both systemic and radiation therapy. Thus, a robust understanding of vascular dynamics is necessary to accurately predict tumor growth, as well as establish optimal treatment protocols to achieve optimal tumor control. Such a goal requires the intimate integration of both theory and experiment. Quantitative and time-resolved imaging methods have emerged as technologies able to visualize and characterize tumor vascular properties before and during therapy at the tissue and cell scale. Parallel to, but separate from those developments, mathematical modeling techniques have been developed to enable in silico investigations into theoretical tumor and vascular dynamics. In particular, recent efforts have sought to integrate both theory and experiment to enable data-driven mathematical modeling. Such mathematical models are calibrated by data obtained from individual tumor-vascular systems to predict future vascular growth, delivery of systemic agents, and response to radiotherapy. In this review, we discuss experimental techniques for visualizing and quantifying vascular dynamics including magnetic resonance imaging, microfluidic devices, and confocal microscopy. We then focus on the integration of these experimental measures with biologically based mathematical models to generate testable predictions.

15.
Med Image Anal ; 73: 102186, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34329903

RESUMEN

Quantitative evaluation of an image processing method to perform as designed is central to both its utility and its ability to guide the data acquisition process. Unfortunately, these tasks can be quite challenging due to the difficulty of experimentally obtaining the "ground truth" data to which the output of a given processing method must be compared. One way to address this issue is via "digital phantoms", which are numerical models that provide known biophysical properties of a particular object of interest.  In this contribution, we propose an in silico validation framework for dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquisition and analysis methods that employs a novel dynamic digital phantom. The phantom provides a spatiotemporally-resolved representation of blood-interstitial flow and contrast agent delivery, where the former is solved by a 1D-3D coupled computational fluid dynamic system, and the latter described by an advection-diffusion equation. Furthermore, we establish a virtual simulator which takes as input the digital phantom, and produces realistic DCE-MRI data with controllable acquisition parameters. We assess the performance of a simulated standard-of-care acquisition (Protocol A) by its ability to generate contrast-enhanced MR images that separate vasculature from surrounding tissue, as measured by the contrast-to-noise ratio (CNR). We find that the CNR significantly decreases as the spatial resolution (SRA, where the subscript indicates Protocol A) or signal-to-noise ratio (SNRA) decreases. Specifically, with an SNRA / SRA = 75 dB / 30 µm, the median CNR is 77.30, whereas an SNRA / SRA = 5 dB / 300 µm reduces the CNR to 6.40. Additionally, we assess the performance of simulated ultra-fast acquisition (Protocol B) by its ability to generate DCE-MR images that capture contrast agent pharmacokinetics, as measured by error in the signal-enhancement ratio (SER) compared to ground truth (PESER). We find that PESER significantly decreases the as temporal resolution (TRB) increases. Similar results are reported for the effects of spatial resolution and signal-to-noise ratio on PESER. For example, with an SNRB / SRB / TRB = 5 dB / 300 µm / 10 s, the median PESER is 21.00%, whereas an SNRB / SRB / TRB = 75 dB / 60 µm / 1 s, yields a median PESER of 0.90%. These results indicate that our in silico framework can generate virtual MR images that capture effects of acquisition parameters on the ability of generated images to capture morphological or pharmacokinetic features. This validation framework is not only useful for investigations of perfusion-based MRI techniques, but also for the systematic evaluation and optimization new MRI acquisition, reconstruction, and image processing techniques.


Asunto(s)
Medios de Contraste , Imagen por Resonancia Magnética , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen
16.
Biomed Phys Eng Express ; 7(4)2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050041

RESUMEN

Convection-enhanced delivery of rhenium-186 (186Re)-nanoliposomes is a promising approach to provide precise delivery of large localized doses of radiation for patients with recurrent glioblastoma multiforme. Current approaches for treatment planning utilizing convection-enhanced delivery are designed for small molecule drugs and not for larger particles such as186Re-nanoliposomes. To enable the treatment planning for186Re-nanoliposomes delivery, we have developed a computational fluid dynamics approach to predict the distribution of nanoliposomes for individual patients. In this work, we construct, calibrate, and validate a family of computational fluid dynamics models to predict the spatio-temporal distribution of186Re-nanoliposomes within the brain, utilizing patient-specific pre-operative magnetic resonance imaging (MRI) to assign material properties for an advection-diffusion transport model. The model family is calibrated to single photon emission computed tomography (SPECT) images acquired during and after the infusion of186Re-nanoliposomes for five patients enrolled in a Phase I/II trial (NCT Number NCT01906385), and is validated using a leave-one-out bootstrapping methodology for predicting the final distribution of the particles. After calibration, our models are capable of predicting the mid-delivery and final spatial distribution of186Re-nanoliposomes with a Dice value of 0.69 ± 0.18 and a concordance correlation coefficient of 0.88 ± 0.12 (mean ± 95% confidence interval), using only the patient-specific, pre-operative MRI data, and calibrated model parameters from prior patients. These results demonstrate a proof-of-concept for a patient-specific modeling framework, which predicts the spatial distribution of nanoparticles. Further development of this approach could enable optimizing catheter placement for future studies employing convection-enhanced delivery.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico por imagen , Convección , Glioblastoma/diagnóstico por imagen , Humanos , Recurrencia Local de Neoplasia , Radioisótopos , Renio
18.
Eur J Radiol ; 136: 109534, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33454460

RESUMEN

PURPOSE: This study assesses the rate of enhancement of breast fibroglandular tissue after administration of a magnetic resonance imaging (MRI) gadolinium-based contrast agent and determines its relationship with response to neoadjuvant therapy (NAT) in women with breast cancer. METHOD: Women with locally advanced breast cancer (N = 19) were imaged four times over the course of NAT. Dynamic contrast-enhanced (DCE) MRI was acquired after administration of a gadolinium-based contrast agent with a temporal resolution of 7.27 s. The tumor, fibroglandular tissue, and adipose tissue were semi-automatically segmented using a manually drawn region of interest encompassing the tumor followed by fuzzy c-means clustering. The rate and relative intensity of signal enhancement were calculated for each voxel within the tumor and fibroglandular tissue. RESULTS: The rate of fibroglandular tissue enhancement after contrast agent injection declined by an average of 29 % over the course of NAT. This decline was present in 16 of the 19 patients in the study. The rate of enhancement is significantly higher in women who achieve pathological complete response (pCR) after both 1 cycle (68 % higher, p < 0.05) and after 3-5 cycles of NAT (58 % higher; p < 0.05). The relative intensity of fibroglandular enhancement correlates with the rate of enhancement (R2 = 0.64, p < 0.001) and is higher in women who achieve pCR after both 1 cycle and after 3-5 cycles of NAT (p < 0.05, both timepoints). CONCLUSION: The rate of fibroglandular tissue enhancement declines over the course of therapy, provides novel information not reflected by tumoral measures, and may predict pathological response early in the course of therapy, with smaller declines in enhancement in women who achieve favorable response.


Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Medios de Contraste , Femenino , Humanos , Imagen por Resonancia Magnética
19.
Neoplasia ; 22(12): 820-830, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33197744

RESUMEN

The ability to accurately predict response and then rigorously optimize a therapeutic regimen on a patient-specific basis, would transform oncology. Toward this end, we have developed an experimental-mathematical framework that integrates quantitative magnetic resonance imaging (MRI) data into a biophysical model to predict patient-specific treatment response of locally advanced breast cancer to neoadjuvant therapy. Diffusion-weighted and dynamic contrast-enhanced MRI data is collected prior to therapy, after 1 cycle of therapy, and at the completion of the first therapeutic regimen. The model is initialized and calibrated with the first 2 patient-specific MRI data sets to predict response at the third, which is then compared to patient outcomes (N = 18). The model's predictions for total cellularity, total volume, and the longest axis at the completion of the regimen are significant within expected measurement precision (P< 0.05) and strongly correlated with measured response (P < 0.01). Further, we use the model to investigate, in silico, a range of (practical) alternative treatment plans to achieve the greatest possible tumor control for each individual in a subgroup of patients (N = 13). The model identifies alternative dosing strategies predicted to achieve greater tumor control compared to the standard of care for 12 of 13 patients (P < 0.01). In summary, a predictive, mechanism-based mathematical model has demonstrated the ability to identify alternative treatment regimens that are forecasted to outperform the therapeutic regimens the patients clinically. This has important implications for clinical trial design with the opportunity to alter oncology care in the future.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/terapia , Imagen por Resonancia Magnética , Modelos Teóricos , Terapia Neoadyuvante , Medicina de Precisión , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Análisis de Datos , Manejo de la Enfermedad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Método de Montecarlo , Terapia Neoadyuvante/efectos adversos , Terapia Neoadyuvante/métodos , Medicina de Precisión/métodos , Resultado del Tratamiento
20.
Tomography ; 6(2): 203-208, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32548297

RESUMEN

We have previously characterized the reproducibility of brain tumor relative cerebral blood volume (rCBV) using a dynamic susceptibility contrast magnetic resonance imaging digital reference object across 12 sites using a range of imaging protocols and software platforms. As expected, reproducibility was highest when imaging protocols and software were consistent, but decreased when they were variable. Our goal in this study was to determine the impact of rCBV reproducibility for tumor grade and treatment response classification. We found that varying imaging protocols and software platforms produced a range of optimal thresholds for both tumor grading and treatment response, but the performance of these thresholds was similar. These findings further underscore the importance of standardizing acquisition and analysis protocols across sites and software benchmarking.


Asunto(s)
Neoplasias Encefálicas , Volumen Sanguíneo Cerebral , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Medios de Contraste , Humanos , Imagen por Resonancia Magnética , Clasificación del Tumor , Valores de Referencia , Reproducibilidad de los Resultados , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...