Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 10(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34679755

RESUMEN

Acute kidney injury (AKI) is a sudden reduction in kidney activity and has a high mortality rate. Salvianolic acid C (SAC), one of the main polyphenolic components of Salvia miltiorrhiza, displays significant pharmacologically active effects. An animal model of cisplatin-induced kidney injury was used to study the potential of SAC to improve AKI. First, SAC was administered intraperitoneally in mice for 10 consecutive days, and then cisplatin was administered intraperitoneally on day 7 to establish a nephrotoxicity mouse model. SAC mitigated renal histological changes, blood creatinine (CRE) and blood urea nitrogen (BUN) production and the levels of inflammatory mediators in the cisplatin-induced AKI. Furthermore, malondialdehyde (MDA) levels were reduced and glutathione (GSH) was increased after intraperitoneal injection (i.p.) administration of SAC. In addition, based on Western blot data, SAC reduced the expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) activation in mouse renal tissues. Finally, SAC diminished the level of TLR-4 expression and enhanced the production of several antioxidative enzymes (superoxidase dismutase (SOD1), glutathione peroxidase (GPx3), catalase, nuclear-factor-erythroid-2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1)), Sirtuin 1 (Sirt1), p-AMP-activated protein kinase (AMPK) and p-Ca2+/calmodulin-dependent protein kinase kinase (CaMKK). In addition, Sirt1 inhibition (EX 527) inverted the effect of SAC against cisplatin-induced nephrotoxicity. Collectively, SAC provides a therapeutic target with promising clinical potential after cisplatin treatment by attenuating oxidative stress and inflammation.

2.
Sensors (Basel) ; 19(17)2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31454930

RESUMEN

Multi-wavelength photoplethysmography (MW-PPG) sensing technology has been known to be superior to signal-wavelength photoplethysmography (SW-PPG) sensing technology. However, limited by the availability of sensing detectors, many prior studies can only use conventional bulky and pricy spectrometers as the detectors, and hence cannot bring the MW-PPG technology to daily-life applications. In this study we developed a chip-scale MW-PPG sensor using innovative on-chip spectrometers, aimed at wearable applications. Also in this paper we present signal processing methods for robustly extracting the PPG signals, in which an increase of up to 50% in the signal-to-noise ratio (S/N) was observed. Example measurements of saturation of peripheral blood oxygen (SpO2) and blood pressure were conducted.


Asunto(s)
Técnicas Biosensibles , Dispositivos Laboratorio en un Chip , Fotopletismografía , Humanos , Análisis Espectral
3.
Oxid Med Cell Longev ; 2019: 9056845, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214283

RESUMEN

Acetaminophen (APAP) overdose is one of the most common causes of drug-induced acute liver failure in humans. To investigate the hepatoprotective effect of salvianolic acid C (SAC) on APAP-induced hepatic damage, SAC was administered by daily intraperitoneal (i.p.) injection for 6 days before the APAP administration in mice. SAC prevented the elevation of serum biochemical parameters and lipid profile including aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (T-Bil), total cholesterol (TC), and triacylglycerol (TG) against acute liver failure. Additionally, SAC reduced the content of malondialdehyde (MDA), the cytochrome P450 2E1 (CYP2E1), and the histopathological alterations and inhibited the production of proinflammatory cytokines in APAP-induced hepatotoxicity. Importantly, SAC effectively diminished APAP-induced liver injury by inhibiting nuclear factor-kappa B (NF-κB), toll-like receptor 4 (TLR4), and mitogen-activated protein kinases (MAPKs) activation signaling pathway. Moreover, SAC enhanced the levels of hepatic activities of glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase, and Kelch-like ECH-associated protein 1 (Keap1)/erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in APAP-induced mice. SAC mainly inhibited the activation of apoptotic pathways by reduction of cytochrome c, Bax, and caspase-3 protein expression. Taken together, we provide the molecular evidence that SAC protected the hepatocytes from APAP-induced damage by mitigating mitochondrial oxidative stress, inflammatory response, and caspase-mediated antiapoptotic effect through inhibition of the Keap1/Nrf2/HO-1 signaling axis.


Asunto(s)
Alquenos/uso terapéutico , Antiinflamatorios/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Polifenoles/uso terapéutico , Salvia miltiorrhiza , Acetaminofén , Animales , Apoptosis , Citocinas/metabolismo , Modelos Animales de Enfermedad , Hemo-Oxigenasa 1/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos ICR , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA