Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Genom ; 10(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38407244

RESUMEN

Despite the notable clinical impact, recent molecular epidemiology regarding third-generation-cephalosporin-resistant (3GC-R) Klebsiella pneumoniae in the USA remains limited. We performed whole-genome sequencing of 3GC-R K. pneumoniae bacteraemia isolates collected from March 2016 to May 2022 at a tertiary care cancer centre in Houston, TX, USA, using Illumina and Oxford Nanopore Technologies platforms. A comprehensive comparative genomic analysis was performed to dissect population structure, transmission dynamics and pan-genomic signatures of our 3GC-R K. pneumoniae population. Of the 178 3GC-R K. pneumoniae bacteraemias that occurred during our study time frame, we were able to analyse 153 (86 %) bacteraemia isolates, 126 initial and 27 recurrent isolates. While isolates belonging to the widely prevalent clonal group (CG) 258 were rarely observed, the predominant CG, 307, accounted for 37 (29 %) index isolates and displayed a significant correlation (Pearson correlation test P value=0.03) with the annual frequency of 3GC-R K. pneumoniae bacteraemia. Interestingly, only 11 % (4/37) of CG307 isolates belonged to the commonly detected 'Texas-specific' clade that has been observed in previous Texas-based K. pneumoniae antimicrobial-resistance surveillance studies. We identified nearly half of our CG307 isolates (n=18) belonged to a novel, monophyletic CG307 sub-clade characterized by the chromosomally encoded bla SHV-205 and unique accessory genome content. This CG307 sub-clade was detected in various regions of the USA, with genome sequences from 24 additional strains becoming recently available in the National Center for Biotechnology Information (NCBI) SRA database. Collectively, this study underscores the emergence and dissemination of a distinct CG307 sub-clade that is a prevalent cause of 3GC-R K. pneumoniae bacteraemia among cancer patients seen in Houston, TX, and has recently been isolated throughout the USA.


Asunto(s)
Bacteriemia , Klebsiella pneumoniae , Humanos , Estados Unidos/epidemiología , Klebsiella pneumoniae/genética , Bacteriemia/epidemiología , Hibridación Genómica Comparativa , Bases de Datos Factuales , Cefalosporinas
2.
J Formos Med Assoc ; 123(1): 45-54, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37625983

RESUMEN

BACKGROUND: The role of environmental contamination in COVID-19 transmission within hospitals is still of interest due to the significant impact of outbreaks globally. However, there is a scarcity of data regarding the utilization of environmental sampling for informing infection control measures during SARS-CoV-2 outbreaks. METHODS: This retrospective study analyzed incident event investigations conducted at a single center from May 1, 2021, to August 31, 2021. Investigations were initiated following the identification of a COVID-19 confirmed case (referred to as the index case) who had stayed in a hospital area outside the dedicated COVID-19 ward/bed and without specific COVID-19 precautions. Measures to prevent intra-hospital spread included contact tracing, adjusted testing policies, isolation of confirmed cases, quarantine of close contacts, environmental disinfection, and PCR testing of environmental samples. RESULTS: Among the 18 incident events investigated, the index case was a healthcare personnel in 8 events, a patient in 8 events, and a caregiver in 2 events. The median number of confirmed COVID-19 cases within 14 days was 13 (IQR, 7-31) for events with SARS-CoV-2 RNA detected on environmental surfaces, compared to only one (IQR, 1-1.5) for events without surface contamination (P = 0.04). Environmental contamination was independently associated with a higher number of COVID-19 cases (P < 0.001). CONCLUSION: This study highlights environmental contamination as an indicator of the severity of incident events and provides a framework for incident event management, including a protocol for environmental sampling. Implementing these measures can help prevent the spread of COVID-19 within healthcare facilities.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , ARN Viral , Taiwán/epidemiología , Estudios Retrospectivos , Centros de Atención Terciaria
3.
J Antimicrob Chemother ; 78(10): 2442-2450, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37574665

RESUMEN

OBJECTIVES: To characterize a blaCMY variant associated with ceftazidime/avibactam resistance from a serially collected Escherichia coli isolate. METHODS: A patient with an intra-abdominal infection due to recurrent E. coli was treated with ceftazidime/avibactam. On Day 48 of ceftazidime/avibactam therapy, E. coli with a ceftazidime/avibactam MIC of >256 mg/L was identified from abdominal drainage. Illumina and Oxford Nanopore Technologies WGS was performed on serial isolates to identify potential resistance mechanisms. Site-directed mutants of CMY ß-lactamase were constructed to identify amino acid residues responsible for ceftazidime/avibactam resistance. RESULTS: WGS revealed that all three isolates were E. coli ST410. The ceftazidime/avibactam-resistant strain uniquely acquired a novel CMY ß-lactamase gene, herein called blaCMY-185, harboured on an IncI-γ/K1 conjugative plasmid. The CMY-185 enzyme possessed four amino acid substitutions relative to CMY-2, including A114E, Q120K, V211S and N346Y, and conferred high-level ceftazidime/avibactam resistance with an MIC of 32 mg/L. Single CMY-2 mutants did not confer reduced ceftazidime/avibactam susceptibility. However, double and triple mutants containing N346Y previously associated with ceftazidime/avibactam resistance in other AmpC enzymes, conferred ceftazidime/avibactam MICs ranging between 4 and 32 mg/L as well as reduced susceptibility to the newly developed cephalosporin, cefiderocol. Molecular modelling suggested that the N346Y substitution confers the reduction of avibactam inhibition due to steric hindrance between the side chain of Y346 and the sulphate group of avibactam. CONCLUSIONS: We identified ceftazidime/avibactam resistance in E. coli associated with a novel CMY variant. Unlike other AmpC enzymes, CMY-185 appears to require an additional substitution on top of N346Y to confer ceftazidime/avibactam resistance.


Asunto(s)
Ceftazidima , Escherichia coli , Humanos , Ceftazidima/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Combinación de Medicamentos , Plásmidos/genética , Pruebas de Sensibilidad Microbiana
4.
BMC Infect Dis ; 21(1): 998, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556028

RESUMEN

BACKGROUND: Actinomyces odontolyticus is not commonly recognized as a causative microbe of liver abscess. The detection and identification of A. odontolyticus in laboratories and its recognition as a pathogen in clinical settings can be challenging. However, in the past decades, knowledge on the clinical relevance of A. odontolyticus is gradually increasing. A. odontolyticus is the dominant oropharyngeal flora observed during infancy [Li et al. in Biomed Res Int 2018:3820215, 2018]. Herein we report a case of severe infection caused by A. odontolyticus in an immunocompromised patient with disruption of the gastrointestinal (GI) mucosa. CASE PRESENTATION: We present a unique case of a patient with human immunodeficiency virus infection who was admitted due to liver abscess and was subsequently diagnosed as having coinfection of A. odontolyticus, Streptococcus constellatus, and Candida albicans during the hospital course. The empirical antibiotics metronidazole and ceftriaxone were replaced with the intravenous administration of fluconazole and ampicillin. However, the patient's condition deteriorated, and he died 3 weeks later. CONCLUSION: This report is one of the first to highlight GI tract perforation and its clinical relevance with A. odontolyticus infection. A. odontolyticus infection should be diagnosed early in high-risk patients, and increased attention should be paid to commensal flora infection in immunocompromised individuals.


Asunto(s)
Infecciones por VIH , Absceso Hepático , Actinomyces , Ampicilina , Ceftriaxona , Infecciones por VIH/complicaciones , Humanos , Absceso Hepático/diagnóstico , Masculino
5.
Am J Bot ; 107(4): 562-576, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32227348

RESUMEN

PREMISE: Unique among vascular plants, some species of Selaginella have single giant chloroplasts in their epidermal or upper mesophyll cells (monoplastidy, M), varying in structure between species. Structural variants include several forms of bizonoplast with unique dimorphic ultrastructure. Better understanding of these structural variants, their prevalence, environmental correlates and phylogenetic association, has the potential to shed new light on chloroplast biology unavailable from any other plant group. METHODS: The chloroplast ultrastructure of 76 Selaginella species was studied with various microscopic techniques. Environmental data for selected species and subgeneric relationships were compared against chloroplast traits. RESULTS: We delineated five chloroplast categories: ME (monoplastidy in a dorsal epidermal cell), MM (monoplastidy in a mesophyll cell), OL (oligoplastidy), Mu (multiplastidy, present in the most basal species), and RC (reduced or vestigial chloroplasts). Of 44 ME species, 11 have bizonoplasts, cup-shaped (concave upper zone) or bilobed (basal hinge, a new discovery), with upper zones of parallel thylakoid membranes varying subtly between species. Monoplastidy, found in 49 species, is strongly shade associated. Bizonoplasts are only known in deep-shade species (<2.1% full sunlight) of subgenus Stachygynandrum but in both the Old and New Worlds. CONCLUSIONS: Multiplastidic chloroplasts are most likely basal, implying that monoplastidy and bizonoplasts are derived traits, with monoplastidy evolving at least twice, potentially as an adaptation to low light. Although there is insufficient information to understand the adaptive significance of the numerous structural variants, they are unmatched in the vascular plants, suggesting unusual evolutionary flexibility in this ancient plant genus.


Asunto(s)
Selaginellaceae , Tracheophyta , Evolución Biológica , Cloroplastos , Filogenia , Hojas de la Planta
6.
BMC Genomics ; 16 Suppl 7: S19, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26100352

RESUMEN

BACKGROUND: Gene regulation is dynamic across cellular conditions and disease subtypes. From the aspect of regulation under modulation, regulation strength between a pair of genes can be modulated by (dependent on) expression abundance of another gene (modulator gene). Previous studies have demonstrated the involvement of genes modulated by single modulator genes in cancers, including breast cancer. However, analysis of multi-modulator co-modulation that can further delineate the landscape of complex gene regulation is, to our knowledge, unexplored previously. In the present study we aim to explore the joint effects of multiple modulator genes in modulating global gene regulation and dissect the biological functions in breast cancer. RESULTS: To carry out the analysis, we proposed the Covariability-based Multiple Regression (CoMRe) method. The method is mainly built on a multiple regression model that takes expression levels of multiple modulators as inputs and regulation strength between genes as output. Pairs of genes were divided into groups based on their co-modulation patterns. Analyzing gene expression profiles from 286 breast cancer patients, CoMRe investigated ten candidate modulator genes that interacted and jointly determined global gene regulation. Among the candidate modulators, ESR1, ERBB2, and ADAM12 were found modulating the most numbers of gene pairs. The largest group of gene pairs was composed of ones that were modulated by merely ESR1. Functional annotation revealed that the group was significantly related to tumorigenesis and estrogen signaling in breast cancer. ESR1-ERBB2 co-modulation was the largest group modulated by more than one modulators. Similarly, the group was functionally associated with hormone stimulus, suggesting that functions of the two modulators are performed, at least partially, through modulation. The findings were validated in majorities of patients (> 99%) of two independent breast cancer datasets. CONCLUSIONS: We have showed CoMRe is a robust method to discover critical modulators in gene regulatory networks, and it is capable of achieving reproducible and biologically meaningful results. Our data reveal that gene regulatory networks modulated by single modulator or co-modulated by multiple modulators play important roles in breast cancer. Findings of this report illuminate complex and dynamic gene regulation under modulation and its involvement in breast cancer.


Asunto(s)
Proteínas ADAM/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Proteínas de la Membrana/genética , Proteína ADAM12 , Algoritmos , Bases de Datos Genéticas , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...