Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
G3 (Bethesda) ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001870

RESUMEN

In organisms with the XY sex-determination system, there is an imbalance in the inheritance and transmission of the X chromosome between males and females. Unlike an autosomal allele, an X-linked recessive allele in a female will have phenotypic effects on its male counterpart. Thus, genes located on the X chromosome are of particular interest to researchers in molecular evolution and genetics. Here we present a model for selection with two alleles of X-linkage to understand fitness components associated with genes on the X chromosome. We apply this model to the fitness analysis of an X-linked gene, OdsH (16D), in the fruit fly Drosophila melanogaster. The function of OdsH is involved in sperm production and the gene is rapidly evolving under positive selection. Using site-directed gene targeting, we generated functional and defective OdsH variants tagged with the eye-color marker gene white. We compare the allele frequency changes of the two OdsH variants, each directly competing against a wild-type OdsH allele in concurrent but separate experimental populations. After twenty generations, the two genetically modified OdsH variants displayed a 40% difference in allele frequencies, with the functional OdsH variant demonstrating an advantage over the defective variant. Using maximum likelihood estimation (MLE), we determined the fitness components associated with the OdsH alleles in males and females. Our analysis revealed functional aspects of the fitness determinants associated with OdsH, and that sex-specific fertility and viability consequences both contribute to selection on an X-linked gene.

2.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507653

RESUMEN

Although gene loss is common in evolution, it remains unclear whether it is an adaptive process. In a survey of seven major mangrove clades that are woody plants in the intertidal zones of daily environmental perturbations, we noticed that they generally evolved reduced gene numbers. We then focused on the largest clade of Rhizophoreae and observed the continual gene set reduction in each of the eight species. A great majority of gene losses are concentrated on environmental interaction processes, presumably to cope with the constant fluctuations in the tidal environments. Genes of the general processes for woody plants are largely retained. In particular, fewer gene losses are found in physiological traits such as viviparous seeds, high salinity, and high tannin content. Given the broad and continual genome reductions, we propose the May-Wigner theory (MWT) of system stability as a possible mechanism. In MWT, the most effective solution for buffering continual perturbations is to reduce the size of the system (or to weaken the total genic interactions). Mangroves are unique as immovable inhabitants of the compound environments in the land-sea interface, where environmental gradients (such as salinity) fluctuate constantly, often drastically. Extending MWT to gene regulatory network (GRN), computer simulations and transcriptome analyses support the stabilizing effects of smaller gene sets in mangroves vis-à-vis inland plants. In summary, we show the adaptive significance of gene losses in mangrove plants, including the specific role of promoting phenotype innovation and a general role in stabilizing GRN in unstable environments as predicted by MWT.


Asunto(s)
Redes Reguladoras de Genes , Genoma , Perfilación de la Expresión Génica , Plantas
3.
Nat Commun ; 15(1): 1635, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388712

RESUMEN

Whole-genome duplication (WGD), or polyploidy, events are widespread and significant in the evolutionary history of angiosperms. However, empirical evidence for rediploidization, the major process where polyploids give rise to diploid descendants, is still lacking at the genomic level. Here we present chromosome-scale genomes of the mangrove tree Sonneratia alba and the related inland plant Lagerstroemia speciosa. Their common ancestor has experienced a whole-genome triplication (WGT) approximately 64 million years ago coinciding with a period of dramatic global climate change. Sonneratia, adapting mangrove habitats, experienced extensive chromosome rearrangements post-WGT. We observe the WGT retentions display sequence and expression divergence, suggesting potential neo- and sub-functionalization. Strong selection acting on three-copy retentions indicates adaptive value in response to new environments. To elucidate the role of ploidy changes in genome evolution, we improve a model of the polyploidization-rediploidization process based on genomic evidence, contributing to the understanding of adaptive evolution during climate change.


Asunto(s)
Genoma , Genómica , Genoma/genética , Plantas/genética , Cromosomas , Genoma de Planta/genética , Poliploidía , Evolución Molecular , Filogenia , Duplicación de Gen
4.
Mol Biol Evol ; 40(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37707487

RESUMEN

In viral evolution, a new mutation has to proliferate within the host (Stage I) in order to be transmitted and then compete in the host population (Stage II). We now analyze the intrahost single nucleotide variants (iSNVs) in a set of 79 SARS-CoV-2 infected patients with most transmissions tracked. Here, every mutation has two measures: 1) iSNV frequency within each individual host in Stage I; 2) occurrence among individuals ranging from 1 (private), 2-78 (public), to 79 (global) occurrences in Stage II. In Stage I, a small fraction of nonsynonymous iSNVs are sufficiently advantageous to rise to a high frequency, often 100%. However, such iSNVs usually fail to become public mutations. Thus, the selective forces in the two stages of evolution are uncorrelated and, possibly, antagonistic. For that reason, successful mutants, including many variants of concern, have to avoid being eliminated in Stage I when they first emerge. As a result, they may not have the transmission advantage to outcompete the dominant strains and, hence, are rare in the host population. Few of them could manage to slowly accumulate advantageous mutations to compete in Stage II. When they do, they would appear suddenly as in each of the six successive waves of SARS-CoV-2 strains. In conclusion, Stage I evolution, the gate-keeper, may contravene the long-term viral evolution and should be heeded in viral studies.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/genética , Mutación
5.
Natl Sci Rev ; 10(4): nwad068, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37034147
6.
Mol Biol Evol ; 40(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36617265

RESUMEN

Recent studies have increasingly pointed to microRNAs (miRNAs) as the agent of gene regulatory network (GRN) stabilization as well as developmental canalization against constant but small environmental perturbations. To analyze mild perturbations, we construct a Dicer-1 knockdown line (dcr-1 KD) in Drosophila that modestly reduces all miRNAs by, on average, ∼20%. The defining characteristic of stabilizers is that, when their capacity is compromised, GRNs do not change their short-term behaviors. Indeed, even with such broad reductions across all miRNAs, the changes in the transcriptome are very modest during development in stable environment. By comparison, broad knockdowns of other regulatory genes (esp. transcription factors) by the same method should lead to drastic changes in the GRNs. The consequence of destabilization may thus be in long-term development as postulated by the theory of canalization. Flies with modest miRNA reductions may gradually deviate from the developmental norm, resulting in late-stage failures such as shortened longevity. In the optimal culture condition, the survival to adulthood is indeed normal in the dcr-1 KD line but, importantly, adult longevity is reduced by ∼90%. When flies are stressed by high temperature, dcr-1 KD induces lethality earlier in late pupation and, as the perturbations are shifted earlier, the affected stages are shifted correspondingly. Hence, in late stages of development with deviations piling up, GRN would be increasingly in need of stabilization. In conclusion, miRNAs appear to be a solution to weak but constant environmental perturbations.


Asunto(s)
MicroARNs , Transcriptoma , Animales , MicroARNs/genética , Drosophila/genética , Longevidad , Fenotipo , Redes Reguladoras de Genes
7.
Plant J ; 111(5): 1411-1424, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35796621

RESUMEN

Adaptation to new environments is a key evolutionary process which presumably involves complex genomic changes. Mangroves, a collection of approximately 80 woody plants that have independently invaded intertidal zones >20 times, are ideal for studying this process. We assembled near-chromosome-scale genomes of three Xylocarpus species as well as an outgroup species using single-molecule real-time sequencing. Phylogenomic analysis reveals two separate lineages, one with the mangrove Xylocarpus granatum and the other comprising a mangrove Xylocarpus moluccensis and a terrestrial Xylocarpus rumphii. In conjunction with previous studies, we identified several genomic features associated with mangroves: (i) signals of positive selection in genes related to salt tolerance and root development; (ii) genome-wide elevated ratios of non-synonymous to synonymous substitution relative to terrestrial relatives; and (iii) active elimination of long terminal repeats. These features are found in the terrestrial X. rumphii in addition to the two mangroves. These genomic features, not being strictly mangrove-specific, are hence considered pre-adaptive. We infer that the coastal but non-intertidal habitat of X. rumphii may have predisposed the common ancestor to invasion of true mangrove habitats. Other features including the preferential retention of duplicated genes and intolerance to pseudogenization are not found in X. rumphii and are likely true adaptive features in mangroves. In conclusion, by studying adaptive shift and partial shifts among closely related species, we set up a framework to study genomic features that are acquired at different stages of the pre-adaptation and adaptation to new environments.


Asunto(s)
Adaptación Fisiológica , Ambiente , Adaptación Fisiológica/genética , Ecosistema , Genoma , Genómica , Plantas/genética
8.
Natl Sci Rev ; 9(5): nwab217, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35663241

RESUMEN

There has been a large literature in the last two decades affirming adaptive DNA sequence evolution between species. The main lines of evidence are from (i) the McDonald-Kreitman (MK) test, which compares divergence and polymorphism data, and (ii) the phylogenetic analysis by maximum likelihood (PAML) test, which analyzes multispecies divergence data. Here, we apply these two tests concurrently to genomic data of Drosophila and Arabidopsis. To our surprise, the >100 genes identified by the two tests do not overlap beyond random expectation. Because the non-concordance could be due to low powers leading to high false negatives, we merge every 20-30 genes into a 'supergene'. At the supergene level, the power of detection is large but the calls still do not overlap. We rule out methodological reasons for the non-concordance. In particular, extensive simulations fail to find scenarios whereby positive selection can only be detected by either MK or PAML, but not both. Since molecular evolution is governed by positive and negative selection concurrently, a fundamental assumption for estimating one of these (say, positive selection) is that the other is constant. However, in a broad survey of primates, birds, Drosophila and Arabidopsis, we found that negative selection rarely stays constant for long in evolution. As a consequence, the variation in negative selection is often misconstrued as a signal of positive selection. In conclusion, MK, PAML and any method that examines genomic sequence evolution has to explicitly address the variation in negative selection before estimating positive selection. In a companion study, we propose a possible path forward in two stages-first, by mapping out the changes in negative selection and then using this map to estimate positive selection. For now, the large literature on positive selection between species has to await reassessment.

9.
Natl Sci Rev ; 9(4): nwab223, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35497643

RESUMEN

In the spread of SARS-CoV-2, there have been multiple waves of replacement between strains, each of which having a distinct set of mutations. The first wave is a group of four mutations (C241T, C3037T, C14408T and A23403G [this being the amino acid change D614G]; all designated 0 to 1 below). This DG (D614G) group, fixed at the start of the pandemic, is the foundation of all subsequent waves of strains. Curiously, the DG group is absent in early Asian samples but present (and likely common) in Europe from the beginning. European data show that the high fitness of DG1111 requires the synergistic effect of all four mutations. However, the European strains would have had no time to evolve the four DG mutations (0 to 1), had they come directly from the early Asian DG0000 strain. Very likely, the European DG1111 strain had acquired the highly adaptive DG mutations in pre-pandemic Europe and had been spreading in parallel with the Asian strains. Two recent reports further support this twin-beginning interpretation. There was a period of two-way spread between Asia and Europe but, by May 2020, the European strains had supplanted the Asian strains globally. This large-scale replacement of one set of mutations for another has since been replayed many times as COVID-19 progresses.

11.
Nat Ecol Evol ; 6(6): 738-749, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35484219

RESUMEN

Genomic studies are now poised to explore whole communities of species. The ~70 species of woody plants that anchor the coastal ecosystems of the tropics, collectively referred to as mangroves, are particularly suited to this exploration. In this study, we de novo sequenced the whole genomes of 32 mangroves, which we combined with other sequences of 30 additional species, comprising almost all mangroves globally. These community-wide genomic data will be valuable for ecology, evolution and biodiversity research. While the data revealed 27 independent origins of mangroves, the total phylogeny shows only modest increases in species number, even in coastal areas of active speciation, suggesting that mangrove extinction is common. A possible explanation for common extinction is the frequent sea-level rises and falls (SLRs and SLFs) documented in the geological record. Indeed, near-extinctions of species with extremely small population size (N) often happened during periods of rapid SLR, as revealed by the genome-wide heterozygosity of almost all mangroves. Reduction in N has possibly been further compounded by population fragmentation and the subsequent accumulation of deleterious mutations, thus pushing mangroves even closer to extinction. Crucially, the impact of the next SLR will be exacerbated by human encroachment into these mangrove habitats, potentially altering the ecosystems of tropical coasts irreversibly.


Asunto(s)
Ecosistema , Bosques , Genoma , Humanos , Filogenia , Plantas
12.
Mol Biol Evol ; 39(3)2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35234869

RESUMEN

In new epidemics after the host shift, the pathogens may experience accelerated evolution driven by novel selective pressures. When the accelerated evolution enters a positive feedback loop with the expanding epidemics, the pathogen's runaway evolution may be triggered. To test this possibility in coronavirus disease 2019 (COVID-19), we analyze the extensive databases and identify five major waves of strains, one replacing the previous one in 2020-2021. The mutations differ entirely between waves and the number of mutations continues to increase, from 3-4 to 21-31. The latest wave in the fall of 2021 is the Delta strain which accrues 31 new mutations to become highly prevalent. Interestingly, these new mutations in Delta strain emerge in multiple stages with each stage driven by 6-12 coding mutations that form a fitness group. In short, the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the oldest to the youngest wave, and from the earlier to the later stages of the Delta wave, is a process of acceleration with more and more mutations. The global increase in the viral population size (M(t), at time t) and the mutation accumulation (R(t)) may have indeed triggered the runaway evolution in late 2020, leading to the highly evolved Alpha and then Delta strain. To suppress the pandemic, it is crucial to break the positive feedback loop between M(t) and R(t), neither of which has yet to be effectively dampened by late 2021. New waves after Delta, hence, should not be surprising.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/genética , Humanos , Mutación , Pandemias , SARS-CoV-2/genética
13.
Natl Sci Rev ; 9(12): nwac250, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36694802

RESUMEN

Despite the concern of within-tumor genetic diversity, this diversity is in fact limited by the kinship among cells in the tumor. Indeed, genomic studies have amply supported the 'Nowell dogma' whereby cells of the same tumor descend from a single progenitor cell. In parallel, genomic data also suggest that the diversity could be >10-fold larger if tumor cells are of multiple origins. We develop an evolutionary hypothesis that a single tumor may often harbor multiple cell clones of independent origins, but only one would be large enough to be detected. To test the hypothesis, we search for independent tumors within a larger one (or tumors-in-tumor). Very high density sampling was done on two cases of colon tumors. Case 1 indeed has 13 independent clones of disparate sizes, many having heavy mutation burdens and potentially highly tumorigenic. In Case 2, despite a very intensive search, only two small independent clones could be found. The two cases show very similar movements and metastasis of the dominant clone. Cells initially move actively in the expanding tumor but become nearly immobile in late stages. In conclusion, tumors-in-tumor are plausible but could be very demanding to find. Despite their small sizes, they can enhance the within-tumor diversity by orders of magnitude. Such increases may contribute to the missing genetic diversity associated with the resistance to cancer therapy.

14.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34850073

RESUMEN

Spatial genetic and phenotypic diversity within solid tumors has been well documented. Nevertheless, how this heterogeneity affects temporal dynamics of tumorigenesis has not been rigorously examined because solid tumors do not evolve as the standard population genetic model due to the spatial constraint. We therefore, propose a neutral spatial (NS) model whereby the mutation accumulation increases toward the periphery; the genealogical relationship is spatially determined and the selection efficacy is blunted (due to kin competition). In this model, neutral mutations are accrued and spatially distributed in manners different from those of advantageous mutations. Importantly, the distinctions could be blurred in the conventional model. To test the NS model, we performed a three-dimensional multiple microsampling of two hepatocellular carcinomas. Whole-genome sequencing (WGS) revealed a 2-fold increase in mutations going from the center to the periphery. The operation of natural selection can then be tested by examining the spatially determined clonal relationships and the clonal sizes. Due to limited migration, only the expansion of highly advantageous clones can sweep through a large part of the tumor to reveal the selective advantages. Hence, even multiregional sampling can only reveal a fraction of fitness differences in solid tumors. Our results suggest that the NS patterns are crucial for testing the influence of natural selection during tumorigenesis, especially for small solid tumors.


Asunto(s)
Neoplasias , Carcinogénesis , Humanos , Mutación , Neoplasias/genética , Selección Genética
15.
Natl Sci Rev ; 8(1): nwaa246, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34676089

RESUMEN

How many incoming travelers (I0 at time 0, equivalent to the 'founders' in evolutionary genetics) infected with SARS-CoV-2 who visit or return to a region could have started the epidemic of that region? I0 would be informative about the initiation and progression of epidemics. To obtain I0 , we analyze the genetic divergence among viral populations of different regions. By applying the 'individual-output' model of genetic drift to the SARS-CoV-2 diversities, we obtain I0 < 10, which could have been achieved by one infected traveler in a long-distance flight. The conclusion is robust regardless of the source population, the continuation of inputs (It for t > 0) or the fitness of the variants. With such a tiny trickle of human movement igniting many outbreaks, the crucial stage of repressing an epidemic in any region should, therefore, be the very first sign of local contagion when positive cases first become identifiable. The implications of the highly 'portable' epidemics, including their early evolution prior to any outbreak, are explored in the companion study (Ruan et al., personal communication).

18.
Sci Bull (Beijing) ; 66(10): 1022-1029, 2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-33520335

RESUMEN

A virus that can cause a global pandemic must be highly adaptive to human conditions. Such adaptation is not likely to have emerged suddenly but, instead, may have evolved step by step with each step favored by natural selection. It is thus necessary to develop a theory about the origin in order to guide the search. Here, we propose such a model whereby evolution occurs in both the virus and the hosts (where the evolution is somatic; i.e., in the immune system). The hosts comprise three groups - the wild animal hosts, the nearby human population, and farther-away human populations. The theory suggests that the conditions under which the pandemic has initially evolved are: (i) an abundance of wild animals in the place of origin (PL0); (ii) a nearby human population of low density; (iii) frequent and long-term animal-human contacts to permit step-by-step evolution; and (iv) a level of herd immunity in the animal and human hosts. In this model, the evolving virus may have regularly spread out of PL0 although such invasions often fail, leaving sporadic cases of early infections. The place of the first epidemic (PL1), where humans are immunologically naïve to the virus, is likely a distance away from PL0. Finally, this current model is only a first attempt and more theoretical models can be expected to guide the search for the origin of SARS-CoV-2.

19.
Natl Sci Rev ; 7(4): 719-720, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34676124
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA