Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
ACS Infect Dis ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770797

RESUMEN

Serotypes 6C and 6D of Streptococcus pneumoniae are two major variants that cause invasive pneumococcal disease (IPD) in serogroup 6 alongside serotypes 6A and 6B. Since the introduction of the pneumococcal conjugate vaccines PCV7 and PCV13, the number of cases of IPD caused by pneumococcus in children and the elderly population has greatly decreased. However, with the widespread use of vaccines, a replacement effect has recently been observed among different serotypes and lowered the effectiveness of the vaccines. To investigate protection against the original serotypes and to explore protection against variants and replacement serotypes, we created a library of oligosaccharide fragments derived from the repeating units of the capsular polysaccharides of serotypes 6A, 6B, 6C, and 6D through chemical synthesis. The library includes nine pseudosaccharides with or without exposed terminal phosphate groups and four pseudotetrasaccharides bridged by phosphate groups. Six carbohydrate antigens related to 6C and 6D were prepared as glycoprotein vaccines for immunogenicity studies. Two 6A and two 6B glycoconjugate vaccines from previous studies were included in immunogenicity studies. We found that the conjugates containing four phosphate-bridged pseudotetrasaccharides were able to induce good immune antibodies and cross-immunogenicity by showing superior activity and broad cross-protective activity in OPKA bactericidal experiments.

3.
Proc Natl Acad Sci U S A ; 121(5): e2313397121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38252815

RESUMEN

Non-small cell lung cancer (NSCLC), a major life-threatening disease accounting for 85% of all lung cancer cases, has been treated with tyrosine kinase inhibitors (TKIs), but often resulted in drug resistance, and approximately 60% of TKI-resistant cases are due to acquired secondary (epithelial growth factor receptor) EGFR-T790M mutation. To identify alternative targets for TKI-resistant NSCLC with EGFR-T790M mutation, we found that the three globo-series glycosphingolipids are increasingly expressed on this type of NSCLC cell lines, and among them, the increase of stage-specific embryonic antigen-4 (SSEA-4) expression is the most significant. Compared to TKI-sensitive cell lines, SSEA-4 and the key enzyme ß3GalT5 responsible for the synthesis of SSEA3 are more expressed in TKI-resistant NSCLC cell lines with EGFR-T790M mutation, and the expression levels strongly correlate with poor survival in patients with EGFR mutation. In addition, we demonstrated that a SSEA-4 targeted monoclonal antibody, especially the homogeneous glycoform with well-defined Fc glycan designed to improve effective functions, is highly effective against this subpopulation of NSCLC in cell-based and animal studies. These findings provide a direction for the prediction of tumor recurrence and treatment of TKI-resistant NSCLC with EGFR-T790M mutation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antígenos Embrionarios Específico de Estadio , Animales , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Recurrencia Local de Neoplasia
4.
Proc Natl Acad Sci U S A ; 120(49): e2314392120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011546

RESUMEN

Since the outbreak of Severe Acute Respiratory Syndrome Virus-2 (SARS-CoV-2) in 2019, more than 15 million spike protein sequences have been identified, raising a new challenge for the development of a broadly protective vaccine against the various emerging variants. We found that the virus, like most other human viruses, depends on host-made glycans to shield the conserved epitopes on spike protein from immune response and demonstrated that deletion of the glycan shields exposed highly conserved epitopes and elicited broadly protective immune responses. In this study, we identified 17 conserved epitopes from 14 million spike protein sequences and 11 of the conserved epitopes are in the S2 domain, including the six most conserved epitopes in the stem region. We also demonstrated that deletion of the glycosites in the spike messenger RNA (mRNA) S2 domain or the stem region exposed the highly conserved epitopes and elicited broadly protective immune responses, particularly CD-8+ T cell response against various SARS-CoV-2 variants, and other human coronaviruses including MERS, SARS viruses, and those causing common cold.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Azúcares , ARN Mensajero/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas , Epítopos , Anticuerpos Antivirales , Vacunas de ARNm
5.
J Am Chem Soc ; 145(17): 9840-9849, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37089019

RESUMEN

Polysaccharides have been successfully used as immunogens for the development of vaccines against bacterial infection; however, there are no oligosaccharide-based vaccines available to date and no previous studies of their processing and presentation. We reported here the intracellular enzymatic processing and antigen presentation of an oligosaccharide-conjugate cancer vaccine prepared from the glycan of Globo-H (GH), a globo-series glycosphingolipid (GSL). This oligosaccharide-conjugate vaccine was shown to elicit antibodies against the glycan moieties of all three globo-series GSLs that are exclusively expressed on many types of cancer and their stem cells. To understand the specificity and origin of cross-reactivity of the antibodies elicited by the vaccine, we found that the vaccine is first processed by fucosidase 1 in the early endosome of dendritic cells to generate a common glycan antigen of the GSLs along with GH for MHC class II presentation. This work represents the first study of oligosaccharide processing and presentation and is expected to facilitate the design and development of glycoconjugate vaccines based on oligosaccharide antigens.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Vacunas Conjugadas , Presentación de Antígeno , Anticuerpos , Polisacáridos , Oligosacáridos
6.
Glycobiology ; 33(5): 423-431, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-36988396

RESUMEN

A novel Gal-binding lectin from mussels (Crenomytilus grayanus, CGL) with 6 binding sites in the dimeric structure has been previously shown to have antifungal, anticancer, and antibacterial activities. In this study, a glycan array was used to confirm that CGL recognizes a range of non-reducing end α- or ß-linked Gal glycans on normal cells but not sialic acid-capped glycans. This finding suggests that CGL has potential in the tumor detection due to the hyper-sialylation present in cell surface glycans from cancer cells. To evaluate the feasibility of this possibility, we labeled CGL with biotin and then mixed it with streptavidin-horseradish peroxidase (HRP) to create a CGL-biotin-SP complex as a probe for use in enzyme-linked lectin assays. CGL-biotin-SP successfully distinguished not only HeLa cells and de-sialylated HeLa cells that mimic normal cell surface glycans but also lung and breast cancer cells with different metastatic abilities. This work provides the insights into a new Gal-binding lectin by establishing its specificity and also demonstrates practical applications in cancer diagnosis greater than other reported lectins.


Asunto(s)
Lectinas , Mytilidae , Animales , Humanos , Lectinas/química , Células HeLa , Biotina , Mytilidae/metabolismo , Polisacáridos/metabolismo
7.
Mol Neurobiol ; 60(7): 3873-3882, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36976478

RESUMEN

Huntington's disease (HD) is a progressive and devastating neurodegenerative disease marked by inheritable CAG nucleotide expansion. For offspring of HD patients carrying abnormal CAG expansion, biomarkers that predict disease onset are crucially important but still lacking. Alteration of brain ganglioside patterns has been observed in the pathology of patients carrying HD. Here, by using a novel and sensitive ganglioside-focused glycan array, we examined the potential of anti-glycan auto-antibodies for HD. In this study, we collected plasma from 97 participants including 42 control (NC), 16 pre-manifest HD (pre-HD), and 39 HD cases and measured the anti-glycan auto-antibodies by a novel ganglioside-focused glycan array. The association between plasma anti-glycan auto-antibodies and disease progression was analyzed using univariate and multivariate logistic regression. The disease-predictive capacity of anti-glycan auto-antibodies was further investigated by receiver operating characteristic (ROC) analysis. We found that anti-glycan auto-antibodies were generally higher in the pre-HD group when compared to the NC and HD groups. Specifically, anti-GD1b auto-antibody demonstrated the potential for distinguishing between pre-HD and control groups. Moreover, in combination with age and the number of CAG repeat, the level of anti-GD1b antibody showed excellent predictability with an area under the ROC curve (AUC) of 0.95 to discriminate between pre-HD carriers and HD patients. With glycan array technology, this study demonstrated abnormal auto-antibody responses that showed temporal changes from pre-HD to HD.


Asunto(s)
Enfermedad de Huntington , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Huntington/patología , Enfermedades Neurodegenerativas/patología , Encéfalo/patología , Biomarcadores
8.
Adv Sci (Weinh) ; : e2205451, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36373710

RESUMEN

Deciphering signaling mechanisms critical for the extended pluripotent stem cell (EPSC) state and primed pluripotency is necessary for understanding embryonic development. Here, a membrane protein, podocalyxin-like protein 1 (PODXL) as being essential for extended and primed pluripotency, is identified. Alteration of PODXL expression levels affects self-renewal, protein expression of c-MYC and telomerase, and induced pluripotent stem cell (iPSC) and EPSC colony formation. PODXL is the first membrane protein reported to regulate de novo cholesterol biosynthesis, and human pluripotent stem cells (hPSCs) are more sensitive to cholesterol depletion than fibroblasts. The addition of exogenous cholesterol fully restores PODXL knockdown-mediated loss of pluripotency. PODXL affects lipid raft dynamics via the regulation of cholesterol. PODXL recruits the RAC1/CDC42/actin network to regulate SREBP1 and SREBP2 maturation and lipid raft dynamics. Single-cell RNA sequencing reveals PODXL overexpression enhanced chimerism between human cells in mouse host embryos (hEPSCs 57%). Interestingly, in the human-mouse chimeras, laminin and collagen signaling-related pathways are dominant in PODXL overexpressing cells. It is concluded that cholesterol regulation via PODXL signaling is critical for ESC/EPSC.

9.
Diagnostics (Basel) ; 12(7)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35885582

RESUMEN

Although the fibrinogen-to-albumin ratio (F/R ratio) has been used as an inflammation marker to predict clinical outcomes in patients with cardiovascular diseases, its association with the prognosis of patients with coronavirus disease 2019 (COVID-19) remains unclear. Electronic databases including EMBASE, MEDLINE, Google Scholar, and Cochrane Library were searched from inception to 20 June 2022. The associations of F/R ratio with poor prognosis (defined as the occurrence of mortality or severe disease) were investigated in patients with COVID-19. A total of 10 studies (seven from Turkey, two from China, one from Croatia) involving 3675 patients published between 2020 and 2022 were eligible for quantitative syntheses. Merged results revealed a higher F/R ratio in the poor prognosis group (standardized mean difference: 0.529, p < 0.001, I2 = 84.8%, eight studies) than that in the good prognosis group. In addition, a high F/R ratio was associated with an increased risk of poor prognosis (odds ratio: 2.684, I2 = 59.5%, five studies). Pooled analysis showed a sensitivity of 0.75, specificity of 0.66, and area under curve of 0.77 for poor prognosis prediction. In conclusion, this meta-analysis revealed a positive correlation between F/A ratio and poor prognostic outcomes of COVID-19. Because of the limited number of studies included, further investigations are warranted to support our findings.

10.
Front Chem ; 10: 865026, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783215

RESUMEN

We presented a facile and scalable route for the synthesis of di-azido sugars via one-pot double inversion of the mono-benzoyl sugars by TBAN3 and studied the dependency pattern between solvent and protecting groups as well as the configuration of the neighboring and leaving groups. Moreover, we developed a chemical synthetic strategy for pseudaminic acid precursors (11 steps in 49%). Furthermore, we discussed the configuration of nonulosonic acid precursors for specificity of PseI and PmNanA enzymatic synthesis, permitting us to synthesize new nonulosonic acid derivatives for accessing Pse isomers.

11.
Front Immunol ; 13: 843183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386691

RESUMEN

Klebsiella pneumoniae is an important pathogen associated with nosocomial infection and has developed increasing resistance to antibiotics such as extended-spectrum ß-lactams and carbapenem. In recent years, K. pneumoniae isolates have emerged as a major cause of global community-acquired infections such as pneumonia and pyogenic liver abscess. Although serotypes K1 and K2 have been identified as the predominant capsular types associated with invasive infections, no K. pneumoniae vaccine is commercially available, probably due to immunogenicity loss in the traditional depolymerization method to obtain capsule polysaccharide (CPS) for the preparation of conjugated vaccine. In this study, we successfully retained immunogenicity by using K1 (K1-ORF34) and K2 (K2-ORF16) CPS depolymerases that were identified from phages to cleave K1 and K2 CPSs into intact structural units of oligosaccharides with intact modifications. The obtained K1 and K2 oligosaccharides were separately conjugated with CRM197 carrier protein to generate CPS-conjugated vaccines. Immunization experiments of mice showed both K1 and K2 CPS-conjugated vaccines induced anti-CPS antibodies with 128-fold and 64-fold increases of bactericidal activities, respectively, compare to mice without vaccinations. Challenge tests indicated that K1 or K2 CPS-conjugated vaccine and divalent vaccine (a mixture of K1 and K2 CPS-conjugated vaccines) protected mice from subsequent infection of K. pneumoniae by the respective capsular type. Thus, we demonstrated K1 and K2 CPS-conjugated vaccines prepared by CPS depolymerases is a promising candidate for developing vaccines against human K. pneumoniae infections.


Asunto(s)
Bacteriófagos , Infecciones por Klebsiella , Vacunas , Animales , Cápsulas Bacterianas , Klebsiella pneumoniae , Ratones , Polisacáridos/metabolismo , Vacunas/metabolismo
12.
Sci Transl Med ; 14(639): eabm0899, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35230146

RESUMEN

A major challenge to end the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is to develop a broadly protective vaccine that elicits long-term immunity. As the key immunogen, the viral surface spike (S) protein is frequently mutated, and conserved epitopes are shielded by glycans. Here, we revealed that S protein glycosylation has site-differential effects on viral infectivity. We found that S protein generated by lung epithelial cells has glycoforms associated with increased infectivity. Compared to the fully glycosylated S protein, immunization of S protein with N-glycans trimmed to the mono-GlcNAc-decorated state (SMG) elicited stronger immune responses and better protection for human angiotensin-converting enzyme 2 (hACE2) transgenic mice against variants of concern (VOCs). In addition, a broadly neutralizing monoclonal antibody was identified from SMG-immunized mice that could neutralize wild-type SARS-CoV-2 and VOCs with subpicomolar potency. Together, these results demonstrate that removal of glycan shields to better expose the conserved sequences has the potential to be an effective and simple approach for developing a broadly protective SARS-CoV-2 vaccine.


Asunto(s)
Vacunas contra la COVID-19 , Polisacáridos , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/metabolismo , Humanos , Ratones , Modelos Animales , SARS-CoV-2 , Vacunación
13.
ACS Cent Sci ; 8(1): 77-85, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35106375

RESUMEN

Globo H (GH) is a tumor-associated carbohydrate antigen (TACA), and GH conjugations have been evaluated as potential cancer vaccines. However, like all carbohydrate-based vaccines, low immunogenicity is a major issue. Modifications of the TACA increase its immunogenicity, but the systemic modification on GH is challenging and the synthesis is cumbersome. In this study, we synthesized several azido-GH analogs for evaluation, using galactose oxidase to selectively oxidize C6-OH of the terminal galactose or N-acetylgalactosamine on lactose, Gb3, Gb4, and SSEA3 into C6 aldehyde, which was then transformed chemically to the azido group. The azido-derivatives were further glycosylated to azido-GH analogs by glycosyltransferases coupled with sugar nucleotide regeneration. These azido-GH analogs and native GH were conjugated to diphtheria toxoid cross-reactive material CRM197 for vaccination with C34 adjuvant in mice. Glycan array analysis of antisera indicated that the azido-GH glycoconjugate with azide at Gal-C6 of Lac (1-CRM197) elicited the highest antibody response not only to GH, SSEA3, and SSEA4, which share the common SSEA3 epitope, but also to MCF-7 cancer cells, which express these Globo-series glycans.

14.
ACS Infect Dis ; 8(3): 626-634, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35171577

RESUMEN

Streptococcus pneumoniae serotypes 6A and 6B are two of the common causes of invasive pneumococcal diseases. Although capsular polysaccharide conjugates of these two serotypes are included in the leading 13-valent pneumococcal conjugate vaccine, its low immunogenicity and high threshold for manufacturing technology indicated the need for vaccine improvement. Structurally defined synthetic immunogens have potential in dealing with these problems. To this end, we built a library of capsular polysaccharide fragments through convergent chemical synthesis in [2 + 2], [4 + 4], [4 + 3], [4 + 2], and [4 + 1] coupling manners. The library is comprised of 18 glycan antigens from trisaccharides to pseudo-octasaccharides, derived from the capsular repeating phosphorylated pseudo-tetrasaccharide with or without phosphate. Eight of them were selected for mouse immunization and further immunological studies. Four pseudo-tetrasaccharides with terminal or bridging phosphate elicited opsonic antibodies, which exhibited bactericidal activities and moderate cross-reactivities.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Animales , Anticuerpos Antibacterianos , Ratones , Oligosacáridos , Infecciones Neumocócicas/prevención & control , Serogrupo
15.
J Biomed Sci ; 29(1): 9, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35130876

RESUMEN

BACKGROUND: K1 capsular polysaccharide (CPS)-associated Klebsiella pneumoniae is the primary cause of pyogenic liver abscesses (PLA) in Asia. Patients with PLA often have serious complications, ultimately leading to a mortality of ~ 5%. This K1 CPS has been reported as a promising target for development of glycoconjugate vaccines against K. pneumoniae infection. The pyruvylation and O-acetylation modifications on the K1 CPS are essential to the immune response induced by the CPS. To date, however, obtaining the fragments of K1 CPS that contain the pyruvylation and O-acetylation for generating glycoconjugate vaccines still remains a challenge. METHODS: We analyzed the digested CPS products with NMR spectroscopy and mass spectrometry to reveal a bacteriophage-derived polysaccharide depolymerase specific to K1 CPS. The biochemical and biophysical properties of the enzyme were characterized and its crystal structures containing bound CPS products were determined. We also performed site-directed mutagenesis, enzyme kinetic analysis, phage absorption and infectivity studies, and treatment of the K. pneumoniae-infected mice with the wild-type and mutant enzymes. RESULTS: We found a bacteriophage-derived polysaccharide lyase that depolymerizes the K1 CPS into fragments of 1-3 repeating trisaccharide units with the retention of the pyruvylation and O-acetylation, and thus the important antigenic determinants of intact K1 CPS. We also determined the 1.46-Å-resolution, product-bound crystal structure of the enzyme, revealing two distinct carbohydrate-binding sites in a trimeric ß-helix architecture, which provide the first direct evidence for a second, non-catalytic, carbohydrate-binding site in bacteriophage-derived polysaccharide depolymerases. We demonstrate the tight interaction between the pyruvate moiety of K1 CPS and the enzyme in this second carbohydrate-binding site to be crucial to CPS depolymerization of the enzyme as well as phage absorption and infectivity. We also demonstrate that the enzyme is capable of protecting mice from K1 K. pneumoniae infection, even against a high challenge dose. CONCLUSIONS: Our results provide insights into how the enzyme recognizes and depolymerizes the K1 CPS, and demonstrate the potential use of the protein not only as a therapeutic agent against K. pneumoniae, but also as a tool to prepare structurally-defined oligosaccharides for the generation of glycoconjugate vaccines against infections caused by this organism.


Asunto(s)
Bacteriófagos , Infecciones por Klebsiella , Liasas , Animales , Cápsulas Bacterianas/genética , Bacteriófagos/genética , Humanos , Cinética , Klebsiella pneumoniae , Ratones
16.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35149556

RESUMEN

Development of the messenger RNA (mRNA) vaccine has emerged as an effective and speedy strategy to control the spread of new pathogens. After vaccination, the mRNA is translated into the real protein vaccine, and there is no need to manufacture the protein in vitro. However, the fate of mRNA and its posttranslational modification inside the cell may affect immune response. Here, we showed that the mRNA vaccine of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein with deletion of glycosites in the receptor-binding domain (RBD) or especially the subunit 2 (S2) domain to expose more conserved epitopes elicited stronger antibody and CD8+ T cell responses with broader protection against the alpha, beta, gamma, delta, and omicron variants, compared to the unmodified mRNA. Immunization of such mRNA resulted in accumulation of misfolded spike protein in the endoplasmic reticulum, causing the up-regulation of BiP/GRP78, XBP1, and p-eIF2α to induce cell apoptosis and strong CD8+ T cell response. In addition, dendritic cells (DCs) incubated with S2-glysosite deleted mRNA vaccine increased class I major histocompatibility complex (MHC I) expression. This study provides a direction for the development of broad-spectrum mRNA vaccines which may not be achieved with the use of expressed proteins as antigens.


Asunto(s)
Vacunas contra la COVID-19/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , Linfocitos T CD8-positivos/inmunología , Citocinas/metabolismo , Glicosilación , Células HEK293 , Antígenos de Histocompatibilidad/metabolismo , Humanos , Inmunidad , Ratones Endogámicos BALB C , Respuesta de Proteína Desplegada , Vacunas Sintéticas/inmunología , Vacunas de ARNm/inmunología
17.
Medicine (Baltimore) ; 100(51): e28438, 2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34941197

RESUMEN

BACKGROUND: This study aimed at assessing the therapeutic effectiveness of greater occipital nerve block (GONB) against postdural puncture headache (PDPH). METHODS: Studies investigating analgesic effects of GONB against PDPH in adults were retrieved from the MEDLINE, EMBASE, Google scholar, and Cochrane central databases from their inception dates to May, 2021. Pain score at postprocedural 24 hours was the primary endpoint, while secondary endpoints were pain score at postprocedural 1 hour and 12 hours as well as the risk of intervention failure. RESULTS: Of the 7 studies (randomized controlled trials [RCTs], n = 4; non-RCTs, n = 3) that recruited 275 patients, 2 investigated female patients undergoing cesarean section and the other 5 were conducted in both obstetric and nonobstetric settings. Pooled results showed a lower mean pain score at 24 hours (i.e., primary outcome) (mean difference [MD] = -2.66, 95%: CI: -3.98 to -1.33, P < .001; I2 = 97%, 6 studies), 1 hour (MD = -4.23, 95% confidence interval [CI]: -5.08 to -3.37, P < .00001; I2 = 86%, 5 studies), and 6 hours (MD = -2.78, 95% CI: -4.99 to -0.57, P = .01; I2 = 98%, 4 studies) in patients with GONB compared to those without. Trial sequential analysis supported the robustness of evidence at postprocedural 24 hours. The use of GONB also decreased the risk of intervention failure (relative ratio [RR] = 0.4, 95% CI: 0.19 to 0.82, P = .01; I2 = 96%, 6 studies, 277 patients). CONCLUSION: Our results suggested a therapeutic effect of greater occipital nerve block against postdural puncture headache up to postprocedural 24 hours. Further large-scale studies are warranted to evaluate its therapeutic benefit beyond the acute stage.


Asunto(s)
Anestesia de Conducción , Anestésicos Locales/administración & dosificación , Bloqueo Nervioso/métodos , Cefalea Pospunción de la Duramadre/terapia , Adulto , Analgesia Epidural/efectos adversos , Analgesia Obstétrica/efectos adversos , Femenino , Humanos , Dolor , Nervios Periféricos/efectos de los fármacos , Cefalea Pospunción de la Duramadre/etiología , Embarazo , Resultado del Tratamiento
18.
ACS Chem Biol ; 16(10): 2016-2025, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34649433

RESUMEN

While the improved treatment of human immunodeficiency virus type 1 (HIV-1) infection is available, the development of an effective and safe prophylactic vaccine against HIV-1 is still an unrealized goal. Encouragingly, the discovery of broadly neutralizing antibodies (bNAbs) from HIV-1 positive patients that are capable of neutralizing a broad spectrum of HIV-1 isolates of various clades has accelerated the progress of vaccine development in the past few years. Some of these bNAbs recognize the N-glycans on the viral surface gp120 glycoprotein. We have been interested in using the glycan epitopes recognized by bNAbs for the development of vaccines to elicit bNAb-like antibodies with broadly neutralizing activities. Toward this goal, we have identified novel hybrid-type structures with subnanomolar avidity toward several bNAbs including PG16, PGT121, PGT128-3C, 2G12, VRC13, VRC-PG05, VRC26.25, VRC26.09, PGDM1400, 35O22, and 10-1074. Here, we report the immunogenicity evaluation of a novel hybrid glycan conjugated to carrier DTCRM197, a nontoxic mutant of the diphtheria toxin, for immunization in mice. Our results indicated that the IgG response was mainly against the chitobiose motif with nonspecific binding to a panel of N-glycans with reducing end GlcNAc-GlcNAc (chitobiose) printed on the glass slides. However, the IgM response was mainly toward the reducing end GlcNAc moiety. We further used the glycoconjugates of Man3GlcNAc2, Man5GlcNAc2, and Man9GlcNAc2 glycans for immunization, and a similar specificity pattern was observed. These findings suggest that the immunogenicity of chitobiose may interfere with the outcome of N-glycan-based vaccines, and modification may be necessary to increase the immunogenicity of the entire N-glycan epitope.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Glicoconjugados/inmunología , Anticuerpos Anti-VIH/inmunología , Polisacáridos/inmunología , Acetilglucosamina/inmunología , Animales , Proteínas Bacterianas/química , Secuencia de Carbohidratos , Disacáridos/inmunología , Epítopos , Femenino , Glicoconjugados/síntesis química , VIH-1/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Ratones Endogámicos C57BL , Polisacáridos/síntesis química , Desarrollo de Vacunas
19.
Nat Microbiol ; 6(11): 1455-1465, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34702977

RESUMEN

Understanding the evolutionary adaptations that enable avian influenza viruses to transmit in mammalian hosts could allow better detection of zoonotic viruses with pandemic potential. We applied ancestral sequence reconstruction to gain viruses representing different adaptive stages of the European avian-like (EA) H1N1 swine influenza virus as it transitioned from avian to swine hosts since 1979. Ancestral viruses representing the avian-like precursor virus and EA swine influenza viruses from 1979-1983, 1984-1987 and 1988-1992 were reconstructed and characterized. Glycan-binding analyses showed stepwise changes in the haemagglutinin receptor-binding specificity of the EA swine influenza viruses-that is, from recognition of both α2,3- and α2,6-linked sialosides to recognition of α2,6-linked sialosides only; however, efficient transmission in piglets was enabled by adaptive changes in the viral polymerase protein and nucleoprotein, which have been fixed since 1983. PB1-Q621R and NP-R351K increased viral replication and transmission in piglets when introduced into the 1979-1983 ancestral virus that lacked efficient transmissibility. The stepwise adaptation of an avian influenza virus to a mammalian host suggests that there may be opportunities to intervene and prevent interspecies jumps through strategic coordination of surveillance and risk assessment activities.


Asunto(s)
Adaptación Fisiológica , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Aviar/virología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Animales , Aves , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Aviar/transmisión , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Filogenia , Polisacáridos/química , Polisacáridos/metabolismo , Receptores Virales/química , Receptores Virales/metabolismo , Porcinos , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/transmisión , Replicación Viral
20.
Sci Rep ; 11(1): 13932, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230598

RESUMEN

We used light to irradiate skin-derived stem cells and tried to find any cellular protein alterations 24 h after illumination. A 266-nm laser with four intensities was used, and of the nine cell markers that were surveyed in our trials, only CD90 was downregulated at an intensity of 20 µJ for 10 s. Repeated illuminations from the 266-nm laser at seven intensities revealed that CD90 expression was downregulated 14.6-28.8%, depending on light intensity. The maximal effect was noted at an intensity of 30 µJ for 2 s. This innovative finding reveals that a 266-nm laser can regulate protein expression in skin-derivative stem cells.


Asunto(s)
Rayos Láser , Piel/citología , Células Madre/metabolismo , Células Madre/efectos de la radiación , Antígenos Thy-1/metabolismo , Células A549 , Biomarcadores/metabolismo , Fluorescencia , Humanos , Nucleótidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...