Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(17): 3108-3122.e13, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37597513

RESUMEN

General protein folding is mediated by chaperones that utilize ATP hydrolysis to regulate client binding and release. Zinc-finger protein 1 (Zpr1) is an essential ATP-independent chaperone dedicated to the biogenesis of eukaryotic translation elongation factor 1A (eEF1A), a highly abundant GTP-binding protein. How Zpr1-mediated folding is regulated to ensure rapid Zpr1 recycling remains an unanswered question. Here, we use yeast genetics and microscopy analysis, biochemical reconstitution, and structural modeling to reveal that folding of eEF1A by Zpr1 requires GTP hydrolysis. Furthermore, we identify the highly conserved altered inheritance of mitochondria 29 (Aim29) protein as a Zpr1 co-chaperone that recognizes eEF1A in the GTP-bound, pre-hydrolysis conformation. This interaction dampens Zpr1⋅eEF1A GTPase activity and facilitates client exit from the folding cycle. Our work reveals that a bespoke ATP-independent chaperone system has mechanistic similarity to ATPase chaperones but unexpectedly relies on client GTP hydrolysis to regulate the chaperone-client interaction.


Asunto(s)
Proteínas Portadoras , GTP Fosfohidrolasas , Chaperonas Moleculares , Factores de Elongación de Péptidos , Proteínas de Saccharomyces cerevisiae , Humanos , Adenosina Trifosfato , GTP Fosfohidrolasas/genética , Guanosina Trifosfato , Chaperonas Moleculares/genética , Factores de Elongación de Péptidos/metabolismo , Saccharomyces cerevisiae , Proteínas Portadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Pliegue de Proteína
2.
Mol Cell ; 83(2): 252-265.e13, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36630955

RESUMEN

The conserved regulon of heat shock factor 1 in budding yeast contains chaperones for general protein folding as well as zinc-finger protein Zpr1, whose essential role in archaea and eukaryotes remains unknown. Here, we show that Zpr1 depletion causes acute proteotoxicity driven by biosynthesis of misfolded eukaryotic translation elongation factor 1A (eEF1A). Prolonged Zpr1 depletion leads to eEF1A insufficiency, thereby inducing the integrated stress response and inhibiting protein synthesis. Strikingly, we show by using two distinct biochemical reconstitution approaches that Zpr1 enables eEF1A to achieve a conformational state resistant to protease digestion. Lastly, we use a ColabFold model of the Zpr1-eEF1A complex to reveal a folding mechanism mediated by the Zpr1's zinc-finger and alpha-helical hairpin structures. Our work uncovers the long-sought-after function of Zpr1 as a bespoke chaperone tailored to the biogenesis of one of the most abundant proteins in the cell.


Asunto(s)
Proteínas Portadoras , Chaperonas Moleculares , Proteínas Portadoras/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Biosíntesis de Proteínas , Zinc/metabolismo , Dedos de Zinc , Factor 1 de Elongación Peptídica/metabolismo
3.
Methods Mol Biol ; 2428: 173-186, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35171480

RESUMEN

Translation elongation is a highly choreographed process that involves substantial conformational changes of the ribosome to accommodate aminoacyl-tRNAs and traverse along the mRNA template. To capture distinct functional states of the ribosome, a high-resolution ribosome profiling-based approach has been developed. By deep-sequencing differently sized ribosome-protected mRNA fragments, this approach captures not only ribosome positions but also their functional states in vivo across the Saccharomyces cerevisiae transcriptome with codon resolution. This chapter presents a condensed and step-by-step protocol for preserving ribosomes in their functional states using a cocktail of antibiotics that traps distinct steps of elongating ribosomes and for constructing a cDNA library derived from the ribosome-protected mRNA fragments for deep sequencing.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Ribosomas , Codón/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
Cell ; 182(2): 404-416.e14, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32610081

RESUMEN

Problems arising during translation of mRNAs lead to ribosome stalling and collisions that trigger a series of quality control events. However, the global cellular response to ribosome collisions has not been explored. Here, we uncover a function for ribosome collisions in signal transduction. Using translation elongation inhibitors and general cellular stress conditions, including amino acid starvation and UV irradiation, we show that ribosome collisions activate the stress-activated protein kinase (SAPK) and GCN2-mediated stress response pathways. We show that the MAPKKK ZAK functions as the sentinel for ribosome collisions and is required for immediate early activation of both SAPK (p38/JNK) and GCN2 signaling pathways. Selective ribosome profiling and biochemistry demonstrate that although ZAK generally associates with elongating ribosomes on polysomal mRNAs, it specifically auto-phosphorylates on the minimal unit of colliding ribosomes, the disome. Together, these results provide molecular insights into how perturbation of translational homeostasis regulates cell fate.


Asunto(s)
Ribosomas/metabolismo , Estrés Fisiológico , Transportadoras de Casetes de Unión a ATP/metabolismo , Anisomicina/farmacología , Apoptosis/efectos de los fármacos , Daño del ADN/efectos de la radiación , Activación Enzimática , Humanos , Quinasas Quinasa Quinasa PAM/deficiencia , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Fosforilación , Polirribosomas/metabolismo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Rayos Ultravioleta , eIF-2 Quinasa/metabolismo
5.
EMBO J ; 39(3): e103365, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31858614

RESUMEN

Inhibitory codon pairs and poly(A) tracts within the translated mRNA cause ribosome stalling and reduce protein output. The molecular mechanisms that drive these stalling events, however, are still unknown. Here, we use a combination of in vitro biochemistry, ribosome profiling, and cryo-EM to define molecular mechanisms that lead to these ribosome stalls. First, we use an in vitro reconstituted yeast translation system to demonstrate that inhibitory codon pairs slow elongation rates which are partially rescued by increased tRNA concentration or by an artificial tRNA not dependent on wobble base-pairing. Ribosome profiling data extend these observations by revealing that paused ribosomes with empty A sites are enriched on these sequences. Cryo-EM structures of stalled ribosomes provide a structural explanation for the observed effects by showing decoding-incompatible conformations of mRNA in the A sites of all studied stall- and collision-inducing sequences. Interestingly, in the case of poly(A) tracts, the inhibitory conformation of the mRNA in the A site involves a nucleotide stacking array. Together, these data demonstrate a novel mRNA-induced mechanisms of translational stalling in eukaryotic ribosomes.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Codón , Microscopía por Crioelectrón , Modelos Moleculares , Conformación de Ácido Nucleico , Poli A/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/genética
6.
Elife ; 82019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31219035

RESUMEN

Translation of problematic sequences in mRNAs leads to ribosome collisions that trigger a series of quality control events including ribosome rescue, degradation of the stalled nascent polypeptide, and targeting of the mRNA for decay (No Go Decay or NGD). Using a reverse genetic screen in yeast, we identify Cue2 as the conserved endonuclease that is recruited to stalled ribosomes to promote NGD. Ribosome profiling and biochemistry provide strong evidence that Cue2 cleaves mRNA within the A site of the colliding ribosome. We demonstrate that NGD primarily proceeds via Xrn1-mediated exonucleolytic decay and Cue2-mediated endonucleolytic decay normally constitutes a secondary decay pathway. Finally, we show that the Cue2-dependent pathway becomes a major contributor to NGD in cells depleted of factors required for the resolution of stalled ribosome complexes. Together these results provide insights into how multiple decay processes converge to process problematic mRNAs in eukaryotic cells.​.


Asunto(s)
Exorribonucleasas/genética , Biosíntesis de Proteínas , Estabilidad del ARN/genética , ARN Mensajero/genética , Proteínas de Saccharomyces cerevisiae/genética , Citocinesis/genética , ARN de Hongos/genética , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética
7.
Mol Cell ; 73(5): 959-970.e5, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30686592

RESUMEN

Ribosomes undergo substantial conformational changes during translation elongation to accommodate incoming aminoacyl-tRNAs and translocate along the mRNA template. We used multiple elongation inhibitors and chemical probing to define ribosome conformational states corresponding to differently sized ribosome-protected mRNA fragments (RPFs) generated by ribosome profiling. We show, using various genetic and environmental perturbations, that short 20-22 or classical 27-29 nucleotide RPFs correspond to ribosomes with open or occupied ribosomal A sites, respectively. These distinct states of translation elongation are readily discerned by ribosome profiling in all eukaryotes we tested, including fungi, worms, and mammals. This high-resolution ribosome profiling approach reveals mechanisms of translation-elongation arrest during distinct stress conditions. Hyperosmotic stress inhibits translocation through Rck2-dependent eEF2 phosphorylation, whereas oxidative stress traps ribosomes in a pre-translocation state, independent of Rck2-driven eEF2 phosphorylation. These results provide insights and approaches for defining the molecular events that impact translation elongation throughout biology.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Extensión de la Cadena Peptídica de Translación , Proteínas Ribosómicas/genética , Ribosomas/genética , Estrés Fisiológico , Transcriptoma , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Codón , Células HeLa , Humanos , Conformación de Ácido Nucleico , Presión Osmótica , Estrés Oxidativo , Factor 2 de Elongación Peptídica/genética , Factor 2 de Elongación Peptídica/metabolismo , Fosforilación , Conformación Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Aminoacilación de ARN de Transferencia
8.
Nature ; 556(7701): 376-380, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29643507

RESUMEN

Ribosome-associated mRNA quality control mechanisms ensure the fidelity of protein translation1,2. Although these mechanisms have been extensively studied in yeast, little is known about their role in mammalian tissues, despite emerging evidence that stem cell fate is controlled by translational mechanisms3,4. One evolutionarily conserved component of the quality control machinery, Dom34 (in higher eukaryotes known as Pelota (Pelo)), rescues stalled ribosomes 5 . Here we show that Pelo is required for mammalian epidermal homeostasis. Conditional deletion of Pelo in mouse epidermal stem cells that express Lrig1 results in hyperproliferation and abnormal differentiation of these cells. By contrast, deletion of Pelo in Lgr5-expressing stem cells has no effect and deletion in Lgr6-expressing stem cells induces only a mild phenotype. Loss of Pelo results in accumulation of short ribosome footprints and global upregulation of translation, rather than affecting the expression of specific genes. Translational inhibition by rapamycin-mediated downregulation of mTOR (mechanistic target of rapamycin kinase) rescues the epidermal phenotype. Our study reveals that the ribosome-rescue machinery is important for mammalian tissue homeostasis and that it has specific effects on different stem cell populations.


Asunto(s)
Evolución Biológica , Epidermis/metabolismo , Homeostasis , Ribosomas/metabolismo , Células Madre/metabolismo , Animales , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Diferenciación Celular , Proliferación Celular , Progresión de la Enfermedad , Endonucleasas , Células Epidérmicas , Epidermis/patología , Femenino , Homeostasis/genética , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Proteínas de Microfilamentos/deficiencia , Proteínas de Microfilamentos/genética , Mutación , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/citología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo
9.
Mol Cell ; 66(2): 194-205.e5, 2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28392174

RESUMEN

The eukaryotic translation factor eIF5A, originally identified as an initiation factor, was later shown to promote translation elongation of iterated proline sequences. Using a combination of ribosome profiling and in vitro biochemistry, we report a much broader role for eIF5A in elongation and uncover a critical function for eIF5A in termination. Ribosome profiling of an eIF5A-depleted strain reveals a global elongation defect, with abundant ribosomes stalling at many sequences, not limited to proline stretches. Our data also show ribosome accumulation at stop codons and in the 3' UTR, suggesting a global defect in termination in the absence of eIF5A. Using an in vitro reconstituted translation system, we find that eIF5A strongly promotes the translation of the stalling sequences identified by profiling and increases the rate of peptidyl-tRNA hydrolysis more than 17-fold. We conclude that eIF5A functions broadly in elongation and termination, rationalizing its high cellular abundance and essential nature.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Terminación de la Cadena Péptídica Traduccional , Factores de Iniciación de Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regiones no Traducidas 3' , Secuencias de Aminoácidos , Codón de Terminación , Perfilación de la Expresión Génica/métodos , Hidrólisis , Cinética , Factores de Iniciación de Péptidos/genética , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Péptidos/metabolismo , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/metabolismo , Proteínas de Unión al ARN/genética , Ribosomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factor 5A Eucariótico de Iniciación de Traducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...