Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res Commun ; 4(4): 1-11, 2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37089436

RESUMEN

Understanding drivers of water quality in local watersheds is the first step for implementing targeted restoration practices. Nutrient inventories can inform water quality management decisions by identifying shifts in nitrogen (N) and phosphorus (P) balances over space and time while also keeping track of the likely urban and agricultural point and nonpoint sources of pollution. The Chesapeake Bay Program's Chesapeake Assessment Scenario Tool (CAST) provides N and P balance data for counties throughout the Chesapeake Bay watershed, and these data were leveraged to create a detailed nutrient inventory for all the counties in the watershed from 1985-2019. This study focuses on three primary watershed nutrient balance components-agricultural surplus, atmospheric deposition, and point source loads-which are thought to be the leading anthropogenic drivers of nutrient loading trends across the watershed. All inputs, outputs, and derived metrics (n=53) like agricultural surplus and nutrient use efficiency, were subjected to short- and long-term trend analyses to discern how sources of pollution to surface water have changed over time. Across the watershed from 1985-2019, downward trends in atmospheric deposition were ubiquitous. Though there are varying effects, long-term declines in agricultural surplus were observed, likely because nutrients are being managed more efficiently. Multiple counties' point source loads declined, primarily associated with upgrades at major cities that discharge treated wastewater directly to tidal waters. Despite all of these positive developments, recent increases in agricultural surpluses from 2009-2019 highlight that water quality gains may soon be reversed in many agricultural areas of the basin. Besides tracking progress and jurisdictional influence on pollution sources, the nutrient inventory can be used for retrospective water quality analysis to highlight drivers of past improvement/degradation of water quality trends and for decision makers to develop and track their near- and long-term watershed restoration strategies.

2.
Water Res ; 188: 116407, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065415

RESUMEN

Understanding the temporal and spatial roles of nutrient limitation on phytoplankton growth is necessary for developing successful management strategies. Chesapeake Bay has well-documented seasonal and spatial variations in nutrient limitation, but it remains unknown whether these patterns of nutrient limitation have changed in response to nutrient management efforts. We analyzed historical data from nutrient bioassay experiments (1992-2002) and data from long-term, fixed-site water-quality monitoring program (1990-2017) to develop empirical approaches for predicting nutrient limitation in the surface waters of the mainstem Bay. Results from classification and regression trees (CART) matched the seasonal and spatial patterns of bioassay-based nutrient limitation in the 1992-2002 period much better than two simpler, non-statistical approaches. An ensemble approach of three selected CART models satisfactorily reproduced the bioassay-based results (classification rate = 99%). This empirical approach can be used to characterize nutrient limitation from long-term water-quality monitoring data on much broader geographic and temporal scales than would be feasible using bioassays, providing a new tool for informing water-quality management. Results from our application of the approach to 21 tidal monitoring stations for the period of 2007-2017 showed modest changes in nutrient limitation patterns, with expanded areas of nitrogen-limitation and contracted areas of nutrient saturation (i.e., not limited by nitrogen or phosphorus). These changes imply that long-term reductions in nitrogen load have led to expanded areas with nutrient-limited phytoplankton growth in the Bay, reflecting long-term water-quality improvements in the context of nutrient enrichment. However, nutrient limitation patterns remain unchanged in the majority of the mainstem, suggesting that nutrient loads should be further reduced to achieve a less nutrient-saturated ecosystem.


Asunto(s)
Bahías , Fitoplancton , Ecosistema , Monitoreo del Ambiente , Nitrógeno/análisis , Nutrientes , Fósforo/análisis , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...