Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Biomed Chromatogr ; 38(5): e5840, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38402901

RESUMEN

The incidence of colibacillosis in poultry is on the rise, significantly affecting the chicken industry. Ceftiofur sodium (CS) is frequently employed to treat this disease, resulting in lipopolysaccharide (LPS) buildup. Processing plays a vital role in traditional Chinese veterinary medicine. The potential intervention in liver injury by polysaccharides from the differently processed products of Angelica sinensis (PDPPAS) induced by combined CS and LPS remains unclear. This study aims to investigate the protective effect of PDPPAS on chicken liver injury caused by CS combined with LPS buildup and further identify the polysaccharides with the highest hepatoprotective activity in chickens. Furthermore, the study elucidates polysaccharides' intervention mechanism using tandem mass tag (TMT) proteomics and multiple reaction monitoring (MRM) methods. A total of 190 1-day-old layer chickens were randomly assigned into 12 groups, of which 14 chickens were in the control group and 16 in other groups, for a 10-day trial. The screening results showed that charred A. sinensis polysaccharide (CASP) had the most effective and the best hepatoprotective effect at 48 h. TMT proteomics and MRM validation results demonstrated that the intervention mechanism of the CASP high-dose (CASPH) intervention group was closely related to the protein expressions of FCER2, TBXAS1, CD34, AGXT, GCAT, COX7A2L, and CYP2AC1. Conclusively, the intervention mechanism of CASPH had multitarget, multicenter regulatory features.


Asunto(s)
Angelica sinensis , Pollos , Hígado , Polisacáridos , Proteómica , Espectrometría de Masas en Tándem , Animales , Angelica sinensis/química , Proteómica/métodos , Polisacáridos/farmacología , Polisacáridos/química , Polisacáridos/análisis , Espectrometría de Masas en Tándem/métodos , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteoma/análisis , Proteoma/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control
3.
BMC Complement Med Ther ; 24(1): 47, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245694

RESUMEN

BACKGROUND: Leguminous Sophora moorcroftiana (SM) is a genuine medicinal material in Tibet. Many research results have reveal the Sophora moorcroftiana alkaloids (SMA), as the main active substance, have a wide range of effects, such as antibacterial, antitumor and antiparasitic effects. However, there are few reports on the inhibition of lung cancer (LC) and its inhibitory mechanism, and the pharmacological mechanism of SMA is still unclear, Therefore, exploring its mechanism of action is of great significance. METHODS: The SMA active components were obtained from the literature database. Whereas the corresponding targets were screened from the PubChem and PharmMapper database, UniProt database were conducted the correction and transformation of UniProt ID on the obtained targets. The GeneCards and OMIM databases identified targets associated with LC. Venny tools obtained the intersection targets of SMA and LC. R language and Cytoscape software constructed the visual of SMA - intersection targets - LC disease network. The intersection targets protein-protein interaction (PPI) network were built by the STRING database. The functions and pathways of the common targets of SMA and LC were enriched by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, molecular docking And A549 cells vitro experiment were performed to further validate our finding. RESULTS: We obtained six kinds of alkaloids in SM, 635 potential targets for these compounds, and 1,303 genes related to LC. SMA and LC intersection targets was 33, including ALB, CCND1, ESR1, NOTCH1 and AR. GO enrichment indicated that biological process of SMA was mainly involved in the positive regulation of transcription and nitric oxide biosynthetic process, and DNA-templated, etc. Biological functions were mainly involved in transcription factor binding and enzyme binding, etc. Cell components were mainly involved in protein complexes, extracellular exosome, cytoplasm and nuclear chromatin, etc., Which may be associated with its anti-LC effects. KEGG enrichment analysis showed that main pathways involved in the anti-LC effects of SMA, including pathway in cancer, non small-cell lung cancer, p53, PI3K-Akt and FOXO signaling pathways. Molecular docking analyses revealed that the six active compounds had a good binding activity with the main therapeutic targets 2W96, 2CCH and 1O96. Experiments in vitro proved that SMA inhibited the proliferation of LC A549 cells. CONCLUSIONS: Results of the present study, we have successfully revealed the SMA compounds had a multi-target and multi-channel regulatory mechanism in treatment LC, These findings provided a solid theoretical reference of SMA in the clinical treatment of LC.


Asunto(s)
Alcaloides , Neoplasias Pulmonares , Sophora , Neoplasias Pulmonares/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Medicina Tradicional Tibetana , Fosfatidilinositol 3-Quinasas , Alcaloides/farmacología
4.
Front Pharmacol ; 14: 1277283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37954842

RESUMEN

Lonicerae Japonicae Caulis is the aboveground stem part of the Lonicera Japonica Thunb, which belongs to the medicine food homology species in China. It has the effects of clearing away heat, toxic material, dredging wind and unblocking collaterals. Modern research shows that it contains various active metabolites and a wide range of pharmacological effects, which is of great research and clinical application value. It mainly contains organic acids, volatile oils, flavonoids, triterpenes, triterpene saponins and other active metabolites. Its pharmacological effects mainly include anti-inflammatory, antibacterial, antitumor, antioxidant, and repairing bone and soft tissue. Based on the literature reports in recent years, the active metabolites, pharmacological effects and mechanisms of Lonicerae Japonicae Caulis were sorted out and summarized. It lays a foundation for explaining the efficacy material basis and application value of Lonicerae Japonicae Caulis. It aims to provide a reference for the in-depth research, development and utilization of Lonicerae Japonicae Caulis.

5.
Biomed Chromatogr ; 36(6): e5362, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35393691

RESUMEN

Chicken colibacillosis is one of the most severe diseases in the poultry industry. Ceftiofur sodium (CS) is often used to treat it in clinical practice and lipopolysaccharide (LPS) accumulates in the chicken's body. Previous experimental studies found that CS combined with LPS could induce liver injury in layer chickens, and polysaccharides from charred Angelica sinensis(CASP) had a better hepatoprotective effect than polysaccharides from unprocessed Angelica sinensis(UASP). However, the intervention mechanism was unclear. Thus, UPLC-Q/TOF-MS/MS-based metabonomics and transcriptomics were used in this study to clarify the hepatoprotective effect mechanism of CASP and UASP in layer chickens. Transcriptomics and enzyme-linked immunosorbent assay were used for biological verification of some critical mutual metabolic pathways screened with metabonomics. The comprehensive analysis results showed that in a layer chicken liver injury model built with LPS and CS, 12 critical metabolic pathways were disturbed, involving 10 important differential metabolites. The hepatoprotective effect mechanism of CASP is related to the arachidonic acid metabolism and mTOR signaling pathways, involving nine important differential metabolites. In contrast, the hepatoprotective effect mechanism of UASP is related to the arachidonic acid metabolism pathway, involving six important differential metabolites.


Asunto(s)
Angelica sinensis , Animales , Ácido Araquidónico , Pollos , Lipopolisacáridos , Metabolómica/métodos , Polisacáridos/farmacología , Espectrometría de Masas en Tándem
6.
Biomed Chromatogr ; 36(2): e5252, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34591996

RESUMEN

Angelica sinensis (AS) is a common Traditional Chinese Medicine used for tonifying blood in China. Unprocessed AS and its four kinds of processed products (ASs) are used to treat blood deficiency syndrome in the country. The different blood-tonifying mechanisms of ASs remain unclear. In this work, a novel method integrating metabolomics and hematological and biochemical parameters was established to provide a complementary explanation of blood supplementation mechanism of ASs. Our results revealed that different ASs exhibited various blood supplementation effect, and that AS parched with alcohol demonstrated the best blood supplementation effect. Eight metabolites from liver tissue and 12 metabolites from spleen tissue were considered to be potential biomarkers. These biomarkers were involved in four metabolic pathways. Correlation analysis results showed that l-aspartic acid and l-alanine (spleen tissue), linoleic acid, and l-cystathionine (liver tissue) exhibited a high positive or negative correlation with the aforesaid biochemical indicators. The blood-supplementation effect mechanism of ASs were related to four metabolic pathways. l-Aspartic acid and l-alanine (spleen tissue), linoleic acid, and l-cystathionine (liver tissue) were the four key metabolites associated with the blood supplementation effect of ASs. This study gives a complementary explanation of the blood supplementation effect and mechanism of action of ASs.


Asunto(s)
Angelica sinensis/química , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional China , Metaboloma/efectos de los fármacos , Aminoácidos/metabolismo , Animales , Cromatografía de Gases y Espectrometría de Masas , Ácido Linoleico/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Metabolómica/métodos , Ratones , Bazo/efectos de los fármacos , Bazo/metabolismo
7.
Front Microbiol ; 12: 643951, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868202

RESUMEN

Ser/Thr phosphorylation by serine/threonine protein kinases (STPKs) plays significant roles in molecular regulation, which allows Mycobacteria to adapt their cell wall structure in response to the environment changes. Identifying direct targets of STPKs and determining their activities are therefore critical to revealing their function in Mycobacteria, for example, in cell wall formation and virulence. Herein, we reported that RmlA, a crucial L-rhamnose biosynthesis enzyme, is a substrate of STPK PknB in Mycobacterium tuberculosis (M. tuberculosis). Mass spectrometry analysis revealed that RmlA is phosphorylated at Thr-12, Thr-54, Thr-197, and Thr-12 is located close to the catalytic triad of RmlA. Biochemical and phenotypic analysis of two RmlA mutants, T12A/T12D, showed that their activities were reduced, and cell wall formation was negatively affected. Moreover, virulence of RmlA T12D mutant was attenuated in a macrophage model. Overall, these results provide the first evidence for the role of PknB-dependent RmlA phosphorylation in regulating cell wall formation in Mycobacteria, with significant implications for pathogenicity.

8.
Mol Cell Proteomics ; 20: 100059, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33109704

RESUMEN

Antibodies play essential roles in both diagnostics and therapeutics. Epitope mapping is essential to understand how an antibody works and to protect intellectual property. Given the millions of antibodies for which epitope information is lacking, there is a need for high-throughput epitope mapping. To address this, we developed a strategy, Antibody binding epitope Mapping (AbMap), by combining a phage displayed peptide library with next-generation sequencing. Using AbMap, profiles of the peptides bound by 202 antibodies were determined in a single test, and linear epitopes were identified for >50% of the antibodies. Using spike protein (S1 and S2)-enriched antibodies from the convalescent serum of one COVID-19 patient as the input, both linear and potentially conformational epitopes of spike protein specific antibodies were identified. We defined peptide-binding profile of an antibody as the binding capacity (BiC). Conceptually, the BiC could serve as a systematic and functional descriptor of any antibody. Requiring at least one order of magnitude less time and money to map linear epitopes than traditional technologies, AbMap allows for high-throughput epitope mapping and creates many possibilities.


Asunto(s)
COVID-19/inmunología , Mapeo Epitopo/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/metabolismo , Ensayo de Inmunoadsorción Enzimática , Epítopos/metabolismo , Proteínas de Escherichia coli/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Sueros Inmunes/sangre , Sueros Inmunes/inmunología , Biblioteca de Péptidos
9.
Tree Physiol ; 40(8): 1080-1094, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32333677

RESUMEN

Dark septate endophytes (DSEs) are one of the most studied groups of root fungal endophytes in recent years. However, the effects of DSE on host plant are still under debate, and the molecular mechanisms are poorly understood. In this study, we identified a DSE fungus of the genus Anteaglonium, named T010, from the wild blueberry. When inoculated into Vaccinium corymbosum L. plants, T010 could enhance root growth and promote shoot branching, leading to increased plant growth. By comparative transcriptome analysis, we obtained 1948 regulated differentially expressed genes (DEGs) from the V. corymbosum plants treated by T010. Further functional enrichment analysis identified a series of DEGs enriched in transcriptional regulation, material transport, phytohormone biosynthesis and flavonoid biosynthesis. Moreover, the comparative analysis of liquid chromatography-mass spectrometry verified that T010 treatment induced the changes in the contents of various phytohormones and flavonoids. This is the first report on the isolation of DSE fungi of the genus Anteaglonium from blueberry roots. Moreover, our results suggested that T010 colonization could result in a series of changes in cell metabolism, biosynthesis and signal pathways, thereby promoting plant growth. Particularly, the changes of phytohormone and flavonoid metabolism induced by T010 colonization might contribute to the promotion of blueberry growth. Our results will provide new insights into understanding of the interaction of DSE fungi and host plants, as well as the development and utilization of DSE preparations.


Asunto(s)
Arándanos Azules (Planta) , Endófitos/genética , Flavonoides , Genes de Plantas , Reguladores del Crecimiento de las Plantas , Raíces de Plantas/genética
10.
J Proteomics ; 215: 103650, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-31958639

RESUMEN

Mycobacterium tuberculosis (Mtb) serine/threonine protein phosphatase PstP plays an important role in regulating Mtb cell division and growth by reversible phosphorylation signaling. However, the substrates of Mtb with which the PstP interacts, and the underlying molecular mechanisms are still largely unknown. In this study, we performed an Mtb proteome microarray to globally identify the PstP bindings. In this way, we discovered 78 interactors between PstP and Mtb proteins, and found a novel connections with EthR. The interaction between PstP and EthR has been validated by Bio-Layer interferometry and Yeast-two-hybrid. And functional studies showed that PstP significantly enhances the binding between EthR and related DNA domain through its interaction with EthR. Phenotypically, overexpression of PstP promoted the resistance of Mycobacterium smegmatis with the antibiotic of ethionamide. Overall, we hopefully wish that the PstP interactors identified in this study will serve as a useful resource for further systematic studies of the roles that PstP plays in the regulation of Mtb dephosphorylation. SIGNIFICANCE: Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, which is responsible of ~1.5 million death per year. Understanding the knowledge about the basic biological regulation pathways in Mtb is an effective approach to discover the novel drug targets for cure TB. PstP is a serine/threonine protein phosphatase in Mtb, and plays important roles in regulating Mtb cell division and growth by reversible phosphorylation signaling. In this study, we identified 78 PstP interacting Mtb proteins using Mtb proteome microarray, which could preliminarily explain the roles of PstP played in Mtb. Moreover, functional analysis showed that a novel transcription factor EthR had been found regulated by PstP through binding, which could enhance the resistance to the antibiotic ETH. Overall, this network constructed with PstP-Mtb proteins could serve as a valuable resource for studying Mtb growth.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Proteínas Bacterianas , Humanos , Mycobacterium smegmatis , Proteoma
11.
Mol Cell Proteomics ; 18(9): 1851-1863, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31308251

RESUMEN

Systemic lupus erythematosus (SLE) is one of the most serious autoimmune diseases, characterized by highly diverse clinical manifestations. A biomarker is still needed for accurate diagnostics. SLE serum autoantibodies were discovered and validated using serum samples from independent sample cohorts encompassing 306 participants divided into three groups, i.e. healthy, SLE patients, and other autoimmune-related diseases. To discover biomarkers for SLE, a phage displayed random peptide library (Ph.D. 12) and deep sequencing were applied to screen specific autoantibodies in a total of 100 serum samples from 50 SLE patients and 50 healthy controls. A statistical analysis protocol was set up for the identification of peptides as potential biomarkers. For validation, 10 peptides were analyzed using enzyme-linked immunosorbent assays (ELISA). As a result, four peptides (SLE2018Val001, SLE2018Val002, SLE2018Val006, and SLE2018Val008) were discovered with high diagnostic power to differentiate SLE patients from healthy controls. Among them, two peptides, i.e. SLE2018Val001 and SLE2018Val002, were confirmed between SLE with other autoimmune patients. The procedure we established could be easily adopted for the identification of autoantibodies as biomarkers for many other diseases.


Asunto(s)
Lupus Eritematoso Sistémico/sangre , Biblioteca de Péptidos , Péptidos/sangre , Adulto , Área Bajo la Curva , Enfermedades Autoinmunes/sangre , Biomarcadores/sangre , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Péptidos/genética , Reproducibilidad de los Resultados
12.
Proteomics ; 18(23): e1800265, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30281201

RESUMEN

Mycobacterium tuberculosis (Mtb) serine/threonine kinase PknG plays an important role in the Mtb-host interaction by facilitating the survival of Mtb in macrophages. However, the human proteins with which the PknG interacts, and the underlying molecular mechanisms are still largely unknown. In this study, a HuProt array is been applied to globally identify the host proteins to which PknG binds. In this way, 125 interactors are discovered, including a cyclophilin protein, CypA. This interaction between PknG and CypA is validated both in vitro and in vivo, and functional studies show that PknG significantly reduces the protein levels of CypA through phosphorylation, which consequently inhibit the inflammatory response through downregulation of NF-κB and ERK1/2 pathways. Phenotypically, overexpression of PknG reduces cytokine levels and promotes the survival of Mycobacterium smegmatis (Msm) in macrophages. Overall, it is expected that the PknG interactors identified in this study will serve as a useful resource for further systematic studies of the roles that PknG plays in the Mtb-host interactions.


Asunto(s)
Mycobacterium tuberculosis/metabolismo , Proteoma/análisis , Proteínas Bacterianas/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Macrófagos/metabolismo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
13.
EBioMedicine ; 30: 225-236, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29622495

RESUMEN

Owing to the spread of multidrug resistance (MDR) and extensive drug resistance (XDR), there is a pressing need to identify potential targets for the development of more-effective anti-M. tuberculosis (Mtb) drugs. PafA, as the sole Prokaryotic Ubiquitin-like Protein ligase in the Pup-proteasome System (PPS) of Mtb, is an attractive drug target. Here, we show that the activity of purified Mtb PafA is significantly inhibited upon the association of AEBSF (4-(2-aminoethyl) benzenesulfonyl fluoride) to PafA residue Serine 119 (S119). Mutation of S119 to amino acids that resemble AEBSF has similar inhibitory effects on the activity of purified Mtb PafA. Structural analysis reveals that although S119 is distant from the PafA catalytic site, it is located at a critical position in the groove where PafA binds the C-terminal region of Pup. Phenotypic studies demonstrate that S119 plays critical roles in the function of Mtb PafA when tested in M. smegmatis. Our study suggests that targeting S119 is a promising direction for developing an inhibitor of M. tuberculosis PafA.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , Serina/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Sitios de Unión , Línea Celular , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Mutación/genética , Nitrógeno/farmacología , Relación Estructura-Actividad , Sulfonas/farmacología , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/aislamiento & purificación
14.
Mol Cell Proteomics ; 16(12): 2243-2253, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29018126

RESUMEN

Mycobacterium tuberculosis (Mtb) has evolved multiple strategies to counter the human immune system. The effectors of Mtb play important roles in the interactions with the host. However, because of the lack of highly efficient strategies, there are only a handful of known Mtb effectors, thus hampering our understanding of Mtb pathogenesis. In this study, we probed Mtb proteome microarray with biotinylated whole-cell lysates of human macrophages, identifying 26 Mtb membrane proteins and secreted proteins that bind to macrophage proteins. Combining GST pull-down with mass spectroscopy then enabled the specific identification of all binders. We refer to this proteome microarray-based strategy as SOPHIE (Systematic unlOcking of Pathogen and Host Interacting Effectors). Detailed investigation of a novel effector identified here, the iron storage protein BfrB (Rv3841), revealed that BfrB inhibits NF-κB-dependent transcription through binding and reducing the nuclear abundance of the ribosomal protein S3 (RPS3), which is a functional subunit of NF- κB. The importance of this interaction was evidenced by the promotion of survival in macrophages of the mycobacteria, Mycobacterium smegmatis, by overexpression of BfrB. Thus, beyond demonstrating the power of SOPHIE in the discovery of novel effectors of human pathogens, we expect that the set of Mtb effectors identified in this work will greatly facilitate the understanding of the pathogenesis of Mtb, possibly leading to additional potential molecular targets in the battle against tuberculosis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Grupo Citocromo b/metabolismo , Ferritinas/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/patogenicidad , Proteómica/métodos , Proteínas Ribosómicas/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Línea Celular , Cristalografía por Rayos X , Grupo Citocromo b/química , Ferritinas/química , Células HEK293 , Humanos , Inmunidad Innata , Macrófagos/citología , Macrófagos/metabolismo , Espectrometría de Masas , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , FN-kappa B/metabolismo , Análisis por Matrices de Proteínas/métodos , Unión Proteica , Proteínas Ribosómicas/química , Células THP-1
15.
Sci Rep ; 7(1): 5860, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28725053

RESUMEN

Tuberculosis is still on the top of infectious diseases list on both mobility and mortality, especially due to drug-resistance of Mycobacterium tuberculosis (M.tb). Ethionamide (ETH) is one of effective second line anti-TB drugs, a synthetic compound similar to isoniazid (INH) structurally, with existing severe problem of ETH resistance. ETH is a prodrug, which is activated by Etha inside M.tb, and etha is transcriptionally repressed by Ethr. We found that c-di-GMP could bind Ethr, enhanced the binding of Ethr to the promoter of etha, and then repressed the transcription of etha, thus caused resistance of M.tb to ETH. Through docking analysis and in vitro validation, we identified that c-di-GMP binds 3 amino acids of Ethr, i.e., Q125, R181 and E190, while the first 2 were the major binding sites. Homology analysis showed that Ethr was highly conservative among mycobacteria. Further docking analysis showed that c-di-GMP preferentially bound proteins of TetR family at the junction hole of symmetric dimer or tetramer proteins. Our results suggest a possible drug-resistance mechanism of ETH through the regulation of Ethr by c-di-GMP.


Asunto(s)
GMP Cíclico/análogos & derivados , Farmacorresistencia Bacteriana/efectos de los fármacos , Etionamida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , GMP Cíclico/farmacología , Dimerización , Simulación del Acoplamiento Molecular , Regiones Promotoras Genéticas
16.
Mol Cell Proteomics ; 16(8): 1491-1506, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28572091

RESUMEN

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb.


Asunto(s)
Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/metabolismo , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteoma/metabolismo , Proteínas Bacterianas/genética , Pared Celular , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteoma/genética , Proteómica , Transducción de Señal
17.
Cell Rep ; 9(6): 2317-29, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25497094

RESUMEN

Poor understanding of the basic biology of Mycobacterium tuberculosis (MTB), the etiological agent of tuberculosis, hampers development of much-needed drugs, vaccines, and diagnostic tests. Better experimental tools are needed to expedite investigations of this pathogen at the systems level. Here, we present a functional MTB proteome microarray covering most of the proteome and an ORFome library. We demonstrate the broad applicability of the microarray by investigating global protein-protein interactions, small-molecule-protein binding, and serum biomarker discovery, identifying 59 PknG-interacting proteins, 30 bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) binding proteins, and 14 MTB proteins that together differentiate between tuberculosis (TB) patients with active disease and recovered individuals. Results suggest that the MTB rhamnose pathway is likely regulated by both the serine/threonine kinase PknG and c-di-GMP. This resource has the potential to generate a greater understanding of key biological processes in the pathogenesis of tuberculosis, possibly leading to more effective therapies for the treatment of this ancient disease.


Asunto(s)
Mycobacterium tuberculosis/genética , Proteoma/genética , Mycobacterium tuberculosis/metabolismo , Sistemas de Lectura Abierta , Análisis por Matrices de Proteínas , Proteoma/inmunología , Proteoma/metabolismo
18.
Acta Biochim Biophys Sin (Shanghai) ; 46(7): 548-55, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24907045

RESUMEN

Protein acetylation is one of the most abundant post-translational modifications and plays critical roles in many important biological processes. Based on the recent advances in mass spectrometry technology, in bacteria, such as Escherichia coli, tremendous acetylated proteins and acetylation sites have been identified. However, only one protein deacetylase, i.e. CobB, has been identified in E. coli so far. How CobB is regulated is still elusive. One right strategy to study the regulation of CobB is to globally identify its interacting proteins. In this study, we used a proteome microarray containing ∼4000 affinity-purified E. coli proteins to globally identify CobB interactors, and finally identified 183 binding proteins of high stringency. Bioinformatics analysis showed that these interacting proteins play a variety of roles in a wide range of cellular functions and are highly enriched in carboxylic acid metabolic process and hexose catabolic process, and also enriched in transferase and hydrolase. We further used bio-layer interferometry to analyze the interaction and quantify the kinetic parameters of putative CobB interactors, and clearly showed that CobB could strongly interact with TopA and AccC. The novel CobB interactors that we identified could serve as a start point for further functional analysis.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Análisis por Matrices de Proteínas , Proteoma , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...