Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38254567

RESUMEN

Different storage conditions can influence microbial community structure and metabolic functions, affecting rice grains' quality. However, the microbiological mechanisms by which different storage conditions affect the quality of rice grains are not yet well understood. This study monitored the quality (the content of starch, protein, etc.) and microbial community structure of rice grains stored under different storage conditions with nitrogen gas atmosphere (RA: normal temperature, horizontal ventilation, RB: normal temperature, vertical ventilation, RC: quasi-low temperature, horizontal ventilation). The results revealed that the rice grains stored under condition RB exhibited significantly lower quality compared to condition RA and RC. In addition, under this condition, the highest relative abundance of Aspergillus (16.0%) and Penicillium (0.4%) and the highest levels of aflatoxin A (3.77 ± 0.07 µg/kg) and ochratoxin B1 (3.19 ± 0.05 µg/kg) were detected, which suggested a higher risk of fungal toxin contamination. Finally, co-occurrence network analysis was performed, and the results revealed that butyl 1,2-benzenedicarboxylate was negatively correlated (p < 0.05) with Moesziomyces and Alternaria. These findings will contribute to the knowledge base of rice storage management and guide the development of effective control measures against undesirable microbial activities.

2.
Fundam Clin Pharmacol ; 38(1): 113-125, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37490927

RESUMEN

BACKGROUND: Dihydroartemisinin (DHA) is an artemisinin derivative known for its antimalarial properties. It has also shown potential as an anti-tumor and anti-angiogenic agent. However, its specific role in inhibiting angiogenesis in breast cancer is not well understood. OBJECTIVES: We aimed to investigate the anti-angiogenesis effect of DHA on breast cancer and explore its potential as a therapeutic drug. Our objectives were to assess the impact of DHA on neovascularization induced by MDA-MB-231 cells, evaluate its effects on vessel sprout and tube-formation in vascular endothelial cells, and analyze the expression of key angiogenesis-related proteins. METHODS: Using a chicken chorioallantoic membrane (CAM) model, we cultured MDA-MB-231 cells and treated them with DHA. We assessed neovascularization and cultured vascular endothelial cells with DHA-treated cell media to evaluate vessel sprout and tube-formation. Protein expression levels of VEGF, MMP-2, and MMP-9 were analyzed using Western blotting. RESULTS: DHA significantly attenuated neovascularization induced by MDA-MB-231 cells. It also suppressed vessel sprout and tube-formation of HUVEC cells when exposed to DHA-treated cell media. Furthermore, DHA downregulated the expression of VEGF, MMP-2, and MMP-9 proteins. Mechanistically, DHA inhibited the phosphorylation of PI3K, AKT, ERK, and NF-κB proteins in tumor cells. CONCLUSIONS: Our study provides evidence of the inhibitory effect of DHA on breast cancer angiogenesis. These findings support the potential of DHA as an anti-breast cancer drug and warrant further investigation for its therapeutic applications.


Asunto(s)
Artemisininas , Neoplasias , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Angiogénesis , Inhibidores de la Angiogénesis/farmacología , Células Endoteliales de la Vena Umbilical Humana , Línea Celular Tumoral
3.
J Hazard Mater ; 465: 133136, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38056258

RESUMEN

Staphylococcus aureus inhabits diverse habitats including food waste and wastewater treatment plants. Cases of S. aureus-induced infection are commonly reported worldwide. The emergence of antimicrobial resistance (AMR) of S. aureus is a growing public health threat worldwide. Here, we longitudinally monitored global trends in antibiotic resistance genes (ARGs) of 586 S. aureus strains, isolated between 1884 and 2022. The ARGs in S. aureus exhibited a significant increase over time (P < 0.0001). Mobile genetic elements play a crucial role in the transfer of ARGs in S. aureus strains. The structural equation model results revealed a significant correlation between the human development index and rising antibiotic consumption, which subsequently leads to an indirect escalation of AMR in S. aureus strains. Lastly, a machine learning algorithm successfully predicted the AMR risk of global terrestrial S. aureus with over 70% accuracy. Overall, these findings provided valuable insights for managing AMR in S. aureus.


Asunto(s)
Eliminación de Residuos , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus , Antibacterianos/farmacología , Alimentos , Farmacorresistencia Bacteriana
4.
J Sci Food Agric ; 104(6): 3458-3467, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38133630

RESUMEN

BACKGROUND: Okara cellulose is a highly abundant, green, sustainable, and biodegradable polymer with many potential industrial applications. In this study, we fabricated composite hydrogels with okara cellulose nanofibers (CNFs) and chitosan (CH) by hydrating, sonicating, and heating them at 100 °C for 30 min, and then induced their assembly by cooling. The effects of okara CNF (with and without 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) oxidation) and CH concentration on the structure and properties of the hydrogels was examined, including their microstructure, surface properties, rheological properties, and thermal stability. RESULTS: Our results indicate that there was an electrostatic attraction between the anionic okara CNF and cationic CH, which facilitated hydrogel formation. The surface, textural, rheological, and thermal stability properties were better for the composite hydrogels than for the single CH ones, as well as for the CNF that had undergone TEMPO oxidation. For the TC-CH hydrogels, the contact angle was 39.5°, the interfacial tension was 69.1 mN m-1 , and the surface tension was 1.44 mN m-1 . CONCLUSION: In this study, the novel hydrogels developed may be useful as a soft material in a range of applications in foods, supplements, health care products, cosmetics, and drugs. © 2023 Society of Chemical Industry.


Asunto(s)
Quitosano , Nanofibras , Celulosa/química , Quitosano/química , Hidrogeles/química , Nanofibras/química , Sonicación
5.
Int J Biol Macromol ; 258(Pt 2): 129079, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38161024

RESUMEN

Currently, there is great interest in converting edible agro-waste, such as okara from soybean production, into value-added products. For this study, we focus on fabricating composite hydrogels from okara cellulose nanofibers (CNFs) and carrageenan (CA). We also examined the effects of TEMPO oxidation of the okara CNFs, as well as CA concentration, on the microstructure and physicochemical properties of the composite hydrogels. The water holding capacity, oil holding capacity, surface tension, gel strength, and viscoelasticity of the composite microgels increased with increasing CA concentration, and it was found that the highest values were obtained for TC-CA2 hydrogel: contact angle = 43.6° and surface tension = 45.12 mN/m, which was attributed to the formation of a more regular and dense three-dimensional gel network. All the CNF-CA microgels had highly anionic ζ-potential values (-38.8 to -50.1 mV), with the magnitude of the negative charge increasing with TEMPO oxidation and carrageenan concentration. These results suggest there would be strong electrostatic repulsion between the composite hydrogels. The composite microgels produced in our work may be useful functional materials for utilization within the food industry, thereby converting a waste product into a valuable commodity.


Asunto(s)
Microgeles , Nanofibras , Celulosa/química , Carragenina , Nanofibras/química , Hidrogeles/química
6.
Curr Med Sci ; 43(4): 655-667, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37391677

RESUMEN

OBJECTIVE: Tumor-associated macrophages (TAMs) of the M2 phenotype are frequently associated with cancer progression. Invasive cancer cells undergoing epithelial-mesenchymal transition (EMT) have a selective advantage as TAM activators. Cyclin D1b is a highly oncogenic splice variant of cyclin D1. We previously reported that cyclin D1b enhances the invasiveness of breast cancer cells by inducing EMT. However, the role of cyclin D1b in inducing macrophage differentiation toward tumor-associated macrophage-like cells remains unknown. This study aimed to explore the relationship between breast cancer cells overexpressing cyclin D1b and TAMs. METHODS: Mouse breast cancer 4T1 cells were transfected with cyclin D1b variant and co-cultured with macrophage cells in a Transwell coculture system. The expression of characteristic cytokines in differentiated macrophages was detected using qRT-PCR, ELISA and zymography assay. Tumor-associated macrophage distribution in a transplanted tumor was detected by immunofluorescence staining. The proliferation and migration ability of breast cancer cells was detected using the cell counting kit-8 (CCK-8) assay, wound healing assay, Transwell invasion assay, and lung metastasis assay. Expression levels of mRNAs were detected by qRT-PCR. Protein expression levels were detected by Western blotting. The integrated analyses of The Cancer Genome Atlas (TCGA) datasets and bioinformatics methods were adopted to discover gene expression, gene coexpression, and overall survival in patients with breast cancer. RESULTS: After co-culture with breast cancer cells overexpressing cyclin D1b, RAW264.7 macrophages were differentiated into an M2 phenotype. Moreover, differentiated M2-like macrophages promoted the proliferation and migration of breast cancer cells in turn. Notably, these macrophages facilitated the migration of breast cancer cells in vivo. Further investigations indicated that differentiated M2-like macrophages induced EMT of breast cancer cells accompanied with upregulation of TGF-ß1 and integrin ß3 expression. CONCLUSION: Breast cancer cells transfected with cyclin D1b can induce the differentiation of macrophages into a tumor-associated macrophage-like phenotype, which promotes tumor metastasis in vitro and in vivo.


Asunto(s)
Neoplasias Pulmonares , Macrófagos Asociados a Tumores , Animales , Ratones , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/patología , Macrófagos/metabolismo , Neoplasias Pulmonares/metabolismo , Diferenciación Celular , Fenotipo
7.
Nutrients ; 15(10)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37242257

RESUMEN

Torreya grandis meal has a high protein content and an appropriate amino acid ratio, making it an excellent protein source for producing ACE inhibitory peptides. To promote its application in food, medicine, and other fields, an alkaline protease hydrolysate of Torreya grandis was used in this study to isolate and identify a novel angiotensin-converting enzyme inhibitory peptide, VNDYLNW (VW-7), using ultrafiltration, gel chromatography purification, LC-MS/MS, and in silico prediction. The results show that the IC50 value of VW-7 was 205.98 µM. The Lineweaver-Burk plot showed that VW-7 had a mixed-type inhibitory effect on ACE. Meanwhile, according to the results of molecular docking, VW-7 demonstrated a strong affinity for ACE (binding energy -10 kcal/mol). VW-7 was bound to ACE through multiple binding sites. In addition, VW-7 could remain active during gastrointestinal digestion in vitro. Nitric oxide (NO) generation in human endothelial cells could rise after receiving a pretreatment with VW-7. These results indicated that Torreya grandis meal protein can be developed into products with antihypertensive function, and VW-7 has broad application prospects in the field of antihypertensive.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Antihipertensivos , Humanos , Antihipertensivos/farmacología , Antihipertensivos/química , Inhibidores de la Enzima Convertidora de Angiotensina/metabolismo , Simulación del Acoplamiento Molecular , Cromatografía Liquida , Células Endoteliales/metabolismo , Espectrometría de Masas en Tándem , Péptidos/química , Peptidil-Dipeptidasa A/metabolismo , Hidrolisados de Proteína/metabolismo
8.
Food Chem X ; 18: 100657, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37025417

RESUMEN

Matcha addition decreased the relative crystallinity and provided with a refreshing flavor for all types of rice cakes. Matcha also significantly enhanced the phenolic content and the oxidant defense of cakes. Compared with the other two types of rice cakes, the one made of glutinous rice are with the lowest starch digestibility. Adding matcha to rice cakes inhibited the in vitro starch digestion, and a significant decrease in the expected glycemic index (eGI) and an increase in resistant starch (RS) were observed. Besides, according to the results of sensory evaluation, an optimized formulation of matcha rice cake was expected to contain 1.6% matcha, 82% water and steamed for 39 min. These findings suggest that matcha could be a favorable food additive to improve both the flavour and nutritional value of steamed rice cake.

9.
Mol Med Rep ; 27(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36896766

RESUMEN

Anemone flaccida Fr. Schmidt, a Traditional Chinese Medicine, has been used in the treatment of rheumatoid arthritis (RA) for numerous years. However, the specific mechanisms remain to be elucidated. Thus, the present study aimed to investigate the main chemical constituents and potential mechanisms of Anemone flaccida Fr. Schmidt. The ethanol extract obtained from Anemone flaccida Fr. Schmidt (EAF) was analyzed using mass spectrometry to determine the main components and the therapeutic effects of EAF on RA were verified using a collagen­induced arthritis (CIA) rat model. Results of the present study demonstrated that synovial hyperplasia and pannus of the model rats were significantly improved following EAF treatment. Moreover, the protein expression levels of VEGF and CD31­labeled neovascularization were significantly reduced in the synovium of CIA rats following treatment with EAF, compared with those of the untreated model group. Subsequently, in vitro experiments were carried out to verify the impact of EAF on synovial proliferation and angiogenesis. Results of the western blot analysis revealed that EAF inhibited the PI3K signaling pathway in endothelial cells, which is associated with anti­angiogenesis. In conclusion, results of the present study demonstrated the therapeutic effects of Anemone flaccida Fr. Schmidt on RA and preliminarily revealed the mechanisms of this drug in the treatment of RA.


Asunto(s)
Anemone , Artritis Experimental , Artritis Reumatoide , Animales , Ratas , Anemone/química , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Células Endoteliales , Etanol/farmacología , Hiperplasia/tratamiento farmacológico , Hiperplasia/patología , Fosfatidilinositol 3-Quinasas , Membrana Sinovial/patología , Extractos Vegetales/farmacología
10.
Food Chem X ; 17: 100540, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36845491

RESUMEN

The rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae) could cause significant grain loss by feeding internally on seeds. In this study, we tried to analyze the volatile compounds in non-infested and S. oryzae-infested brown rice during different storage periods to identify potential markers in S. oryzae-infested brown rice and facilitate pest monitoring during brown rice storage. Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) were used to identify the volatile compounds. On the basis of GC-MS and GC-IMS data, a reliable method to distinguish between non-infested and S. oryzae-infested brown rice was discovered using partial least squares-discriminant analysis (PLS-DA). 1-Octen-3-ol, 1-hexanol and 3-octanone were co-selected as potential markers because their variable importance in projection (VIP) was greater than 1 in both models. The current study's findings lay a foundation for further research on the brown rice infestation mechanism and safe storage monitoring.

11.
Foods ; 12(3)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36766030

RESUMEN

The camellia seed cake proteins (CP) used in this study were individually hydrolyzed with neutral protease, alkaline protease, papain, and trypsin. The results showed that the hydrolysate had the highest ACE inhibitory activity at 67.36 ± 0.80% after four hours of neutral protease hydrolysis. Val-Val-Val-Pro-Gln-Asn (VVVPQN) was then obtained through ultrafiltration, Sephadex G-25 gel chromatography separation, LC-MS/MS analysis, and in silico screening. VVVPQN had ACE inhibitory activity with an IC50 value of 0.13 mg/mL (198.66 µmol/L), and it inhibited ACE in a non-competitive manner. The molecular docking indicated that VVVPQN can combine with ACE to form eight hydrogen bonds. The results of the stability study showed that VVVPQN maintained high ACE-inhibitory activity in weakly acidic and neutral environments and that heat treatment (20-80 °C) and Na+, Mg2+, as well as Fe3+ metal ions had little effect on the activity of VVVPQN. Moreover, it remained relatively stable after in vitro simulated gastrointestinal digestion. These results revealed that VVVPQN identified in camellia seed cake has the potential to be applied in functional food or antihypertensive drugs.

12.
Foods ; 12(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36673484

RESUMEN

In recent years, food-derived hypoglycemic peptides have received a lot of attention in the study of active peptides, but their anti-diabetic mechanism of action is not yet clear. In this study, camellia seed cake protein (CSCP) was used to prepare active peptides with α-glucosidase inhibition. The optimization of the preparation of camellia seed cake protein hydrolyzed peptides (CSCPH) was conducted via response surface methodology (RSM) using a protamex with α-glucosidase inhibition as an indicator. The optimal hydrolysis conditions were pH 7.11, 4300 U/g enzyme concentration, 50 °C hydrolysis temperature, and 3.95 h hydrolysis time. Under these conditions, the α-glucosidase inhibition rate of CSCPH was 58.70% (IC50 8.442 ± 0.33 mg/mL). The peptides with high α-glucosidase inhibitory activity were isolated from CSCPH by ultrafiltration and Sephadex G25. Leu-Leu-Val-Leu-Tyr-Tyr-Glu-Tyr (LLVLYYEY) and Leu-Leu-Leu-Leu-Pro-Ser-Tyr-Ser-Glu-Phe (LLLLPSYSEF) were identified and synthesized for the first time by Liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) analysis and virtual screening with IC50 values of 0.33 and 1.11 mM, respectively. Lineweaver-Burk analysis and molecular docking demonstrated that LLVLYYEY was a non-competitive inhibitor of α-glucosidase, whereas LLLLPSYSEF inhibited α-glucosidase, which displayed a mixed inhibition mechanism. The study suggests the possibility of using peptides from Camellia seed cake as hypoglycaemic compounds for the prevention and treatment of diabetes.

13.
Curr Res Food Sci ; 6: 100408, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36545513

RESUMEN

Carya cathayensis Sarg meal (CM) is a by-product of the edible kernel during oil manufacture. In order to improve wastes utilization, the CM derived peptides (CMPs) that showed an in vitro radical scavenging ability were firstly prepared by five different hydrolases. Alcalase treatment revealed the highest yield and the optimal conditions were further determined by response surface methodology (RSM), under which the yield reached 35.84%. Simulated gastrointestinal digestion led to an enrichment of low molecular weight (MW) peptides (<3 kDa), which was beneficial for protecting hepatocyte damaged by hydrogen peroxide (H2O2). Furthermore, generated hydrolysates exhibited protective effects on paraquat-induced Caenorhabditis elegans via enhancing expressions of Skinhead-1 (SKN-1) and its downstream target including glutathione S-transferase (GST)-4 and superoxide dismutase (SOD)-3 to diminish oxidative stress. Taken together, our results demonstrated that simple enzymatic hydrolysis of crude protein powder from CM represents an efficient, eco-friendly and economical strategy for producing bioactive peptides, which can be supplemented in nutraceutical products and food preservation.

14.
Oral Dis ; 29(2): 515-527, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34174132

RESUMEN

Adiponectin (APN) is a kind of endogenous anti-tumor adipocytokine, which exerts its function by binding to its receptors (AdipoR1 and AdipoR2). However, hyperadiponectinemia is found in some pathophysiological processes without significant protective effect, which indicates the existence of APN resistance. Here, we aimed to investigate the locoregional expression of APN in tongue squamous cell carcinoma (TSCC) tissues, and to explore the potential regulatory mechanism of APN resistance under hypoxia. Consequently, we found that the protein expression of APN and AdipoR1, but not AdipoR2, was upregulated in the early stage of TSCC and after hypoxic treatment ex vivo and in vitro. Knockdown of HIF-1α decreased the level of APN and AdipoR1, and simultaneously, HIF-1α was identified as transcriptor of the APN. Intriguingly, a regenerative feedback of HIF-1α was unexpectedly detected after application of recombinant globular APN (gAPN), which most likely contributed to the APN resistance. Furthermore, HIF-1α blockade combined with gAPN has a prominent synergistic antitumor effect, which suggested an effective amelioration in APN resistance. In all, our study revealed the possible mechanism of APN resistance under hypoxia and provides a promising strategy of bi-target treatment with APN and HIF-1α for TSCC therapy.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Lengua , Humanos , Adiponectina/farmacología , Carcinoma de Células Escamosas/patología , Neoplasias de la Lengua/patología , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia
15.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292968

RESUMEN

Pecan (Carya cathayensis) is an important economic crop, and its hydrolyzed peptides have been evidenced to reduce the effect of oxidative stress due to their antioxidant capacity. Hence, the protocols of ultrafiltration and gel filtration chromatography were established to obtain bioactive peptides from by-products of C. cathayensis (pecan cake). As measured by DPPH/ABTS radical scavenging, the peptides with less molecular weight (MW) possess higher antioxidant capacity. PCPH-III (MW < 3 kDa) presented higher radical scavenging capacity than PCPH-II (3 kDa < MW < 10 kDa) and PCPH-I (MW > 10 kDa) measured by DPPH (IC50: 111.0 µg/ mL) and measured by ABTs (IC50: 402.9 µg/mL). The secondary structure and amino acid composition varied by their MW, in which PCPH-II contained more α-helices (26.71%) and ß-sheets (36.96%), PCPH-III contained higher ratios of ß-turns (36.87%), while the composition of different secondary of PCPH-I was even 25 ± 5.76%. The variation trend of α-helix and random experienced slightly varied from PCPH-I to PCPH-II, while significantly decreased from PCPH-II to PCPH-III. The increasing antioxidant capacity is followed by the content of proline, and PCPH-III had the highest composition (8.03%). With regard to the six peptides identified by LC-MS/MS, two of them (VYGYADK and VLFSNY) showed stronger antioxidant capacity than others. In silico molecular docking demonstrated their combining abilities with a transcription factor Kelch-like ECH-associated protein 1 (Keap1) and speculated that they inhibit oxidative stress through activating the Keap1-Nrf2-ARE pathway. Meanwhile, increased activity of SOD and CAT­antioxidant markers­were found in H2O2-induced cells. The residue of tyrosine was demonstrated to contribute the most antioxidant capacity of VYGYADK and its position affected less. This study provided a novel peptide screening and by-product utilization process that can be applied in natural product developments.


Asunto(s)
Productos Biológicos , Carya , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Hidrolisados de Proteína/metabolismo , Antioxidantes/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Peróxido de Hidrógeno/metabolismo , Cromatografía Liquida , Simulación del Acoplamiento Molecular , Espectrometría de Masas en Tándem , Péptidos/química , Estrés Oxidativo , Aminoácidos/metabolismo , Superóxido Dismutasa/metabolismo , Prolina/metabolismo , Tirosina/metabolismo , Productos Biológicos/farmacología , China
16.
Oncol Lett ; 24(2): 275, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35782905

RESUMEN

Cisplatin (DDP) is a potent and widely applied chemotherapeutic agent. However, its clinical efficacy for the treatment of liver cancer is limited by adverse effects and the development of resistance. Combinatorial therapy may alleviate these issues. Dihydroartemisinin (DHA) is a first-generation derivative of artemisinin. The effects of DDP on liver cancer when applied in combination with DHA have not previously been studied. Therefore, the present study aimed to investigate the effects of DHA combined with DDP on HepG2 cells and their potential underlying molecular mechanisms. HepG2 cells were treated with different concentrations of DHA and/or DDP. Cell Counting Kit-8 assay was used to assess the cell viability. Cell proliferation and apoptosis were quantified using flow cytometry, acridine orange/ethidium bromide (AO/EB) fluorescent dual staining and the colony formation assay. Cell migration was quantified using the Transwell and wound healing assays. The HepG2 cell protein expression levels of Fas, Fas-associated death domain (FADD), procaspase-3, cleaved caspase-3, pro-caspase-8, cleaved caspase-8, Bax, Bcl-2, E-cadherin and N-cadherin, were detected via western blotting. Gelatin zymography was used to assess the levels of MMP-9 secreted by HepG2 cells into the supernatant. Following combined DHA and DDP treatment, the percentage of apoptotic cells was significantly increased, whereas cell proliferation and migration were significantly reduced, compared with cells treated with DDP only. DHA and DPP in combination significantly inhibited the expression of MMP-9, significantly increased the protein expression levels of Fas, FADD, Bax and E-cadherin, significantly increased the ratio of cleaved caspase-3 and cleaved caspase-8 to their precursor proteins and significantly decreased the protein expression levels of Bcl-2 and N-cadherin. The findings of the present study suggested that, DHA may confer synergistic effects with DDP in potentially promoting apoptosis and inhibiting the epithelial-mesenchymal transition for the treatment of liver cancer.

17.
Biochem Biophys Res Commun ; 612: 77-83, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35512460

RESUMEN

In higher plants, the PSI core complex is associated with light-harvesting complex I (LHCI), forming the PSI-LHCI super-complex. In vascular plants, four major antenna proteins (LHCA1-4) are assembled in the order of LHCA1, LHCA4, LHCA2, and LHCA3 into a crescent-shaped LHCI, while LHCA5 and LHCA6 are minor antenna proteins. By contrast, in moss and green algae, LHCA5 or LHCA5-like protein functions as one of the major antenna proteins by residing at the second site of LHCI. In order to learn the effect of binding different LHCA proteins, i.e. LHCA4 or LHCA5, within the PSI-LHCI super-complex on photosynthetic properties of plants, we constructed LHCA5 overexpression plants with a wild type (WT) background and an lhca4 mutant background in Arabidopsis thaliana. The results showed that: (i) there are little difference in phenotype, pigment composition and chlorophyll fluorescence parameters between the transgenic Arabidopsis and their corresponding background materials; (ii) in spite of a small amount of LHCA5, the LHCA5-included PSI-LHCI super-complex can be obtained by extracting samples incubated with anti-FLAG M2 Affinity Gel, in which LHCA5 is found to substitute for LHCA4 as analyzed by immunoblotting analysis; (iii) the replacement of LHCA4 with LHCA5 within PSI-LHCI super-complex leads to a blue shift in low temperature fluorescence emission, suggesting a decrease in far-red absorbance. These results provide new clues for understanding the position and function of LHCA4 and LHCA5 during the evolution of green plants from aquatic to terrestrial lifestyles.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fluorescencia , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema I/química
18.
Foods ; 11(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35327280

RESUMEN

Numerous studies indicate that tea has versatile health benefits, and attempts are being made to use it as a food additive. In this study, three types of tea powder (TP) [matcha tea powder (MTP), green tea powder (GTP), and black tea powder (BTP)] were used in noodle processing, and the cooking properties, antioxidant potential, and volatile profiles of dried tea noodles (DTN) were investigated. Between 0.5% and 2% TP addition decreased the cooking time, cooking loss, and water absorption of DTN, regardless of concentrations. TP decreased the brightness (L*) of the DTN while increasing the greenness (|-a*|) and yellowness (b*) values of matcha tea noodles (MTN) and green tea noodles (GTN), as well as the redness (a*) and yellowness (b*) values of black tea noodles (BTN). The results of the 1,1-Diphenyl-2-Picrylhydrazyl (DPPH) scavenging activity (10.84-95%), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free scavenging activity (2.03-92.23%), and total phenolic content (TPC) (97.32-540.97 mg/g) of the noodles increased as the TP addition increased. Besides, TP also enriched the flavor of the DTN, with alcohol, aldehydes, and ethers being the main components. In conclusion, the addition of TP positively improved the quality of the DTN and increased its antioxidative potential.

19.
Funct Plant Biol ; 49(6): 432-443, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34637699

RESUMEN

In vascular plants, bryophytes and algae, the photosynthetic light reaction takes place in the thylakoid membrane where two transmembrane supercomplexes PSII and PSI work together with cytochrome b 6 f and ATP synthase to harvest the light energy and produce ATP and NADPH. Vascular plant PSI is a 600-kDa protein-pigment supercomplex, the core complex of which is partly surrounded by peripheral light-harvesting complex I (LHCI) that captures sunlight and transfers the excitation energy to the core to be used for charge separation. PSI is unique mainly in absorption of longer-wavelengths than PSII, fast excitation energy transfer including uphill energy transfer, and an extremely high quantum efficiency. From the early 1980s, a lot of effort has been dedicated to structural and functional studies of PSI-LHCI, leading to the current understanding of how more than 200 cofactors are kept at the correct distance and geometry to facilitate fast energy transfer in this supercomplex at an atomic level. In this review, we review the history of studies on vascular plant PSI-LHCI, summarise the present research progress on its structure, and present some new and further questions to be answered in future studies.


Asunto(s)
Complejo de Proteína del Fotosistema I , Tracheophyta , Adenosina Trifosfato , Transferencia de Energía , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema I/química , Tilacoides/metabolismo , Tracheophyta/metabolismo
20.
Food Funct ; 12(22): 11671-11685, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34730149

RESUMEN

Cyclophosphamide (CTX) is an antitumor drug commonly used to treat various cancer types. Unfortunately, its toxic side effects, including gastrointestinal (GI) toxicity, affect treatment compliance and patients' prognosis. Thus, there is a critical need of evaluating strategies that may improve the associated GI toxicity induced by CTX. In this work, we evaluated the capacity of epigallocatechin-3-gallate (EGCG), a major constituent of green tea, to improve the recovery of gut injury induced by CTX in mice. Treatment with CTX for 5 days severely damaged the intestinal structure, increased immune-related cytokines (TNFα, IL-10 and IL-21), reduced the expression levels of tight junction proteins (ZO-1, occludin, claudin-1), induced reactive oxygen species, altered the composition of gut microbiota, and reduced short chain fatty acid levels. EGCG treatment, starting one day after the last CTX dose, significantly improved the intestinal structure, ameliorated gut permeability, and restored ZO-1, occludin and claudin-1 levels. Moreover, EGCG reduced TNFα, IL-10 and IL-21 levels and decreased oxidative stress by regulating the activities of the antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase. Finally, EGCG treatment restored the composition of gut microbiota and the levels of the short chain fatty acids. In conclusion, these findings indicate that EGCG may function as an effective bioactive compound to minimize CTX-induced GI tract toxicity.


Asunto(s)
Catequina/análogos & derivados , Ciclofosfamida/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Enfermedades Intestinales/metabolismo , Uniones Estrechas/efectos de los fármacos , Animales , Catequina/farmacología , Disbiosis/metabolismo , Inflamación/metabolismo , Enfermedades Intestinales/inducido químicamente , Masculino , Ratones , Ratones Endogámicos ICR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...