Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39268874

RESUMEN

In arbuscular mycorrhizal (AM) symbiosis, appropriate regulation of the formation, maintenance, and degeneration of the arbuscule are essential for plants and fungi. In this study, we identified a Cysteine-2/Histidine-2 zinc finger protein (C2H2-ZFP)-encoding gene in Lotus japonicus named Regulator of Symbiosome Differentiation-Like (LjRSDL) that is required for arbuscule degeneration. Evolutionary analysis showed that homologs of LjRSDL exist in mycorrhizal flowering plants. We obtained ProLjRSDL::GUS transgenic hairy roots and showed that LjRSDL was strongly upregulated upon AM colonization, particularly at 18 days post AM fungi inoculation and specifically expressed in arbuscular-containing cells. The mycorrhization rate increased in the ljrsdl mutant but decreased in LjRSDL overexpressed L. japonicus. Interestingly, we observed higher proportions of large arbuscule in the ljrsdl mutant but lower proportions of larger arbuscule in LjRSDL overexpressing plants. Transcriptome analyses indicated that genes involved in arbuscule degeneration were significantly changed upon the dysregulation of LjRSDL and that LjRSDL-dependent regulation in AM symbiosis is mainly via the hormone signal transduction pathway. LjRSDL, therefore, represents a C2H2-ZFP that negatively regulates AM symbiosis. Our study provides insight into understanding plant-AM fungal communication and AM symbiosis development.

2.
Plant Physiol Biochem ; 213: 108845, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885565

RESUMEN

The SWEETs (sugars will eventually be exported transporter) family comprises a class of recently identified sugar transporters that play diverse roles in regulating plant development. Beyond those fundamental functions, emerging evidence suggests that SWEETs may also be involved in plant stress responses, such as salt tolerance. However, the specific role of maize SWEETs in regulating salt tolerance remains unexplored. In this study, we demonstrate that two maize SWEET family members, ZmSWEET15a and ZmSWEET15b, are typical sugar transporters with seven transmembrane helices localized in the cell membrane. The heterologous expression of ZmSWEET15a and ZmSWEET15b in the yeast mutant strain confirms their role as sucrose transporters. Overexpression of ZmSWEET15a and ZmSWEET15b in Arabidopsis resulted in improved NaCl resistance and significant increase in seed germination rate compared to the wild type. Furthermore, by generating maize knockout mutants, we observe that the absence of ZmSWEET15a and ZmSWEET15b affects both plant growth and grain development. The salt treatment results indicate that the knockout mutants of these two genes are more sensitive to salt stress. Comparative analyses revealed that wild-type maize plants outperformed the knockout mutants in terms of growth parameters and physiological indices. Our findings unravel a novel function of ZmSWEET15a and ZmSWEET15b in the salt stress response, offering a theoretical foundation for enhancing maize salt resistance.


Asunto(s)
Arabidopsis , Proteínas de Plantas , Tolerancia a la Sal , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
3.
BMC Plant Biol ; 23(1): 603, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38030972

RESUMEN

BACKGROUND: Plant respiratory burst oxidase homolog (Rboh) gene family produces reactive oxygen species (ROS), and it plays key roles in plant-microbe interaction. Most Rboh gene family-related studies mainly focused on dicotyledonous plants; however, little is known about the roles of Rboh genes in gramineae. RESULTS: A total of 106 Rboh genes were identified in seven gramineae species, including Zea mays, Sorghum bicolor, Brachypodium distachyon, Oryza sativa, Setaria italica, Hordeum vulgare, and Triticum aestivum. The Rboh protein sequences showed high similarities, suggesting that they may have conserved functions across different species. Duplication mode analysis detected whole-genome/segmental duplication (WGD)/(SD) and dispersed in the seven species. Interestingly, two local duplication (LD, including tandem and proximal duplication) modes were found in Z. mays, S. italica and H. vulgare, while four LD were detected in T. aestivum, indicating that these genes may have similar functions. Collinearity analysis indicated that Rboh genes are at a stable evolution state in all the seven species. Besides, Rboh genes from Z. mays were closely related to those from S. bicolor, consistent with the current understanding of plant evolutionary history. Phylogenetic analysis showed that the genes in the subgroups I and II may participate in plant-AM fungus symbiosis. Cis-element analysis showed that different numbers of elements are related to fungal induction in the promoter region. Expression profiles of Rboh genes in Z. mays suggested that Rboh genes had distinct spatial expression patterns. By inoculation with AM fungi, our transcriptome analysis showed that the expression of Rboh genes varies upon AM fungal inoculation. In particularly, ZmRbohF was significantly upregulated after inoculation with AM fungi. pZmRbohF::GUS expression analyses indicated that ZmRbohF was induced by arbuscular mycorrhizal fungi in maize. By comparing WT and ZmRbohF mutant, we found ZmRbohF had limited impact on the establishment of maize-AM fungi symbiosis, but play critical roles in regulating the proper development of arbuscules. CONCLUSIONS: This study provides a comprehensive analysis of the evolution relationship of Rboh genes in seven gramineae species. Results showed that several Rboh genes regulate maize-AM fungal symbiosis process. This study provides valuable information for further studies of Rboh genes in gramineae.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Zea mays/metabolismo , Filogenia , Simbiosis , Raíces de Plantas/genética , Regulación de la Expresión Génica de las Plantas
4.
Physiol Mol Biol Plants ; 28(3): 573-583, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35465207

RESUMEN

The symbiosis with arbuscular mycorrhizal (AM) fungi improves plants' nutrient uptake. During this process, transcription factors have been highlighted to play crucial roles. Members of the GRAS transcription factor gene family have been reported involved in AM symbiosis, but little is known about SCARECROW-LIKE3 (SCL3) genes belonging to this family in Lotus japonicus. In this study, 67 LjGRAS genes were identified from the L. japonicus genome, seven of which were clustered in the SCL3 group. Three of the seven LjGRAS genes expression levels were upregulated by AM fungal inoculation, and our biochemical results showed that the expression of LjGRAS36 was specifically induced by AM colonization. Functional loss of LjGRAS36 in mutant ljgras36 plants exhibited a significantly reduced mycorrhizal colonization rate and arbuscular size. Transcriptome analysis showed a deficiency of LjGRAS36 led to the dysregulation of the gibberellic acid signal pathway associated with AM symbiosis. Together, this study provides important insights for understanding the important potential function of SCL3 genes in regulating AM symbiotic development. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01161-z.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA