Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38457327

RESUMEN

We present a general, fast, and practical solution for interpolating novel views of diverse real-world scenes given a sparse set of nearby views. Existing generic novel view synthesis methods rely on time-consuming scene geometry pre-computation or redundant sampling of the entire space for neural volumetric rendering, limiting the overall efficiency. Instead, we incorporate learned MVS priors into the neural volume rendering pipeline while improving the rendering efficiency by reducing sampling points under the guidance of depth probability distributions. Specifically, fewer but important points are sampled under the guidance of depth probability distributions extracted from the learned MVS architecture. Based on the learned probability-guided sampling, we develop a sophisticated neural volume rendering module that effectively integrates source view information with the learned scene structures. We further propose confidence-aware refinement to improve the rendering results in uncertain, occluded, and unreferenced regions. Moreover, we build a four-view camera system for holographic display and provide a real-time version of our framework for free-viewpoint experience, where novel view images of a spatial resolution of 512×512 can be rendered at around 20 fps on a single GTX 3090 GPU. Experiments show that our method achieves 15 to 40 times faster rendering compared to state-of-the-art baselines, with strong generalization capacity and comparable high-quality novel view synthesis performance.

2.
IEEE Trans Pattern Anal Mach Intell ; 45(1): 425-443, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35180076

RESUMEN

Light field (LF) cameras record both intensity and directions of light rays, and encode 3D scenes into 4D LF images. Recently, many convolutional neural networks (CNNs) have been proposed for various LF image processing tasks. However, it is challenging for CNNs to effectively process LF images since the spatial and angular information are highly inter-twined with varying disparities. In this paper, we propose a generic mechanism to disentangle these coupled information for LF image processing. Specifically, we first design a class of domain-specific convolutions to disentangle LFs from different dimensions, and then leverage these disentangled features by designing task-specific modules. Our disentangling mechanism can well incorporate the LF structure prior and effectively handle 4D LF data. Based on the proposed mechanism, we develop three networks (i.e., DistgSSR, DistgASR and DistgDisp) for spatial super-resolution, angular super-resolution and disparity estimation. Experimental results show that our networks achieve state-of-the-art performance on all these three tasks, which demonstrates the effectiveness, efficiency, and generality of our disentangling mechanism. Project page: https://yingqianwang.github.io/DistgLF/.

3.
IEEE Trans Pattern Anal Mach Intell ; 44(9): 5430-5444, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33861692

RESUMEN

The light field (LF) reconstruction is mainly confronted with two challenges, large disparity and the non-Lambertian effect. Typical approaches either address the large disparity challenge using depth estimation followed by view synthesis or eschew explicit depth information to enable non-Lambertian rendering, but rarely solve both challenges in a unified framework. In this paper, we revisit the classic LF rendering framework to address both challenges by incorporating it with advanced deep learning techniques. First, we analytically show that the essential issue behind the large disparity and non-Lambertian challenges is the aliasing problem. Classic LF rendering approaches typically mitigate the aliasing with a reconstruction filter in the Fourier domain, which is, however, intractable to implement within a deep learning pipeline. Instead, we introduce an alternative framework to perform anti-aliasing reconstruction in the image domain and analytically show comparable efficacy on the aliasing issue. To explore the full potential, we then embed the anti-aliasing framework into a deep neural network through the design of an integrated architecture and trainable parameters. The network is trained through end-to-end optimization using a peculiar training set, including regular LFs and unstructured LFs. The proposed deep learning pipeline shows a substantial superiority in solving both the large disparity and the non-Lambertian challenges compared with other state-of-the-art approaches. In addition to the view interpolation for an LF, we also show that the proposed pipeline also benefits light field view extrapolation.


Asunto(s)
Algoritmos , Redes Neurales de la Computación
4.
IEEE Trans Image Process ; 30: 8999-9013, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34705646

RESUMEN

Typical learning-based light field reconstruction methods demand in constructing a large receptive field by deepening their networks to capture correspondences between input views. In this paper, we propose a spatial-angular attention network to perceive non-local correspondences in the light field, and reconstruct high angular resolution light field in an end-to-end manner. Motivated by the non-local attention mechanism (Wang et al., 2018; Zhang et al., 2019), a spatial-angular attention module specifically for the high-dimensional light field data is introduced to compute the response of each query pixel from all the positions on the epipolar plane, and generate an attention map that captures correspondences along the angular dimension. Then a multi-scale reconstruction structure is proposed to efficiently implement the non-local attention in the low resolution feature space, while also preserving the high frequency components in the high-resolution feature space. Extensive experiments demonstrate the superior performance of the proposed spatial-angular attention network for reconstructing sparsely-sampled light fields with Non-Lambertian effects.

5.
IEEE Trans Image Process ; 30: 3240-3251, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33621177

RESUMEN

Learning-based single image super-resolution (SISR) aims to learn a versatile mapping from low resolution (LR) image to its high resolution (HR) version. The critical challenge is to bias the network training towards continuous and sharp edges. For the first time in this work, we propose an implicit boundary prior learnt from multi-view observations to significantly mitigate the challenge in SISR we outline. Specifically, the multi-image prior that encodes both disparity information and boundary structure of the scene supervise a SISR network for edge-preserving. For simplicity, in the training procedure of our framework, light field (LF) serves as an effective multi-image prior, and a hybrid loss function jointly considers the content, structure, variance as well as disparity information from 4D LF data. Consequently, for inference, such a general training scheme boosts the performance of various SISR networks, especially for the regions along edges. Extensive experiments on representative backbone SISR architectures constantly show the effectiveness of the proposed method, leading to around 0.6 dB gain without modifying the network architecture.

6.
IEEE Trans Image Process ; 28(7): 3261-3273, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30714917

RESUMEN

Research in light field reconstruction focuses on synthesizing novel views with the assistance of depth information. In this paper, we present a learning-based light field reconstruction approach by fusing a set of sheared epipolar plane images (EPIs). We start by showing that a patch in a sheared EPI will exhibit a clear structure when the sheared value equals the depth of that patch. By taking advantage of this pattern, a convolutional neural network (CNN) is then trained to evaluate the sheared EPIs, and output a reference score for fusing the sheared EPIs. The proposed CNN is elaborately designed to learn the similarity degree between the input sheared EPI and the ground truth EPI. Therefore, no depth information is required for network training and reasoning. We demonstrate the high performance of the proposed method through evaluations on synthetic scenes, real-world scenes, and challenging microscope light fields. We also show a further application of our proposed network for depth inference.

7.
IEEE Trans Pattern Anal Mach Intell ; 41(7): 1681-1694, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29994195

RESUMEN

In this paper, a novel convolutional neural network (CNN)-based framework is developed for light field reconstruction from a sparse set of views. We indicate that the reconstruction can be efficiently modeled as angular restoration on an epipolar plane image (EPI). The main problem in direct reconstruction on the EPI involves an information asymmetry between the spatial and angular dimensions, where the detailed portion in the angular dimensions is damaged by undersampling. Directly upsampling or super-resolving the light field in the angular dimensions causes ghosting effects. To suppress these ghosting effects, we contribute a novel "blur-restoration-deblur" framework. First, the "blur" step is applied to extract the low-frequency components of the light field in the spatial dimensions by convolving each EPI slice with a selected blur kernel. Then, the "restoration" step is implemented by a CNN, which is trained to restore the angular details of the EPI. Finally, we use a non-blind "deblur" operation to recover the spatial high frequencies suppressed by the EPI blur. We evaluate our approach on several datasets, including synthetic scenes, real-world scenes and challenging microscope light field data. We demonstrate the high performance and robustness of the proposed framework compared with state-of-the-art algorithms. We further show extended applications, including depth enhancement and interpolation for unstructured input. More importantly, a novel rendering approach is presented by combining the proposed framework and depth information to handle large disparities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...