Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Food Sci Technol ; 61(2): 340-352, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38196720

RESUMEN

In order to utilize salmon skin for high value, and investigate the structural identification and combination mechanism of iron (II)-chelating peptides systemically, Atlantic salmon (Salmo salar L.) skin, a by-product of Atlantic salmon processing, was treated by two-step enzymatic hydrolysis to obtain salmon skin active peptides (SSAP). Then they reacted with iron (II) to obtain iron (II)-chelating salmon skin active peptides (SSAP-Fe) with a high iron (II) chelating ability of 98.84%. The results of Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) spectroscopy, 8-anilino-1-naphthalenesulfonic acid ammonium salt hydrate (ANS) combined fluorescence measurement, isothermal titration calorimetry (ITC) and full wavelength ultraviolet (UV) scanning showed that the structural characteristics of SSAP changed before and after chelating iron (II). Reverse phase high performance liquid chromatography (RP-HPLC) and mass spectrometry were used to identify and quantify the peptides in SSAP-Fe. Four peptide sequences (STEGGG, GIIKYGDDFMH, PGQPGIGYDGPAGPPGPPGPPGAP and QNQRESWTTCRSQSSLPDG) were identified. The content of PGQPGIGYDGPAGPPGPPGPPGAP was the highest, at 25.17 µg/mg. The pharmacokinetic and pharmacodynamic properties of these four peptides were also investigated, and the results indicated that they have satisfactory predicted ADMET properties. Molecular docking technology was used to analyze the binding sites between iron (II) and SSAP, and it was found that PGQPGIGYDGPAGPPGPPGPPGAP had the lowest predicted binding energy with iron (II) and the most stable predicted binding energy with iron (II). This results showed that the stability of SSAP-Fe were closely related to the number of covalent bonds and the types of amino acids. This study revealed the structure and combination mechanism of SSAP-Fe, and indicated that SSAP-Fe prepared by chelation may be used as a Fe supplement that can be applied in functional foods or ingredients.

2.
Food Sci Nutr ; 11(6): 2925-2941, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37324839

RESUMEN

Fermentation technology was used to prepare the acaí (Euterpe oleracea) fermentation liquid. The optimal fermentation parameters included a strain ratio of Lactobacillus paracasei: Leuconostoc mesenteroides: Lactobacillus plantarum = 0.5:1:1.5, a fermentation time of 6 days, and a nitrogen source supplemental level of 2.5%. In optimal conditions, the ORAC value of the fermentation liquid reached the highest value of 273.28 ± 6.55 µmol/L Trolox, which was 55.85% higher than the raw liquid. In addition, the FRAP value of the acaí, as well as its scavenging ability of DPPH, hydroxyl, and ABTS free radicals, increased after fermentation. Furthermore, after fermentation treatment, the microstructure, basic physicochemical composition, amino acid composition, γ-aminobutyric acid, a variety of volatile components, and so on have changed. Therefore, fermentation treatment can significantly improve the nutritional value and flavor of the acaí. This provides a theoretical basis for the comprehensive utilization of acaí.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA