Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Cybern ; 50(12): 4862-4875, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31613789

RESUMEN

There are two common challenges in particle swarm optimization (PSO) research, that is, selecting proper exemplars and designing an efficient learning model for a particle. In this article, we propose a triple archives PSO (TAPSO), in which particles in three archives are used to deal with the above two challenges. First, particles who have better fitness (i.e., elites) are recorded in one archive while other particles who offer faster progress, called profiteers in this article, are saved in another archive. Second, when breeding each dimension of a potential exemplar for a particle, we choose a pair of elite and profiteer from corresponding archives as two parents to generate the dimension value by ordinary genetic operators. Third, each particle carries out a specific learning model according to the fitness of its potential exemplars. Furthermore, there is no acceleration coefficient in TAPSO aiming to simplify the learning models. Finally, if an exemplar has excellent performance, it will be regarded as an outstanding exemplar and saved in the third archive, which can be reused by inferior particles aiming to enhance the exploitation and to save computing resources. The experimental results and comparisons between TAPSO and other eight PSOs on 30 benchmark functions and four real applications suggest that TAPSO attains very promising performance in different types of functions, contributing to both higher solution accuracy and faster convergence speed. Furthermore, the effectiveness and efficiency of these new proposed strategies are discussed based on extensive experiments.

2.
Phys Rev E ; 95(1-1): 012301, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28208447

RESUMEN

The understanding and prediction of information diffusion processes on networks is a major challenge in network theory with many implications in social sciences. Many theoretical advances occurred due to stochastic spreading models. Nevertheless, these stochastic models overlooked the influence of rational decisions on the outcome of the process. For instance, different levels of trust in acquaintances do play a role in information spreading, and actors may change their spreading decisions during the information diffusion process accordingly. Here, we study an information-spreading model in which the decision to transmit or not is based on trust. We explore the interplay between the propagation of information and the trust dynamics happening on a two-layer multiplex network. Actors' trustable or untrustable states are defined as accumulated cooperation or defection behaviors, respectively, in a Prisoner's Dilemma setup, and they are controlled by a memory span. The propagation of information is abstracted as a threshold model on the information-spreading layer, where the threshold depends on the trustability of agents. The analysis of the model is performed using a tree approximation and validated on homogeneous and heterogeneous networks. The results show that the memory of previous actions has a significant effect on the spreading of information. For example, the less memory that is considered, the higher is the diffusion. Information is highly promoted by the emergence of trustable acquaintances. These results provide insight into the effect of plausible biases on spreading dynamics in a multilevel networked system.

3.
Sci Rep ; 4: 6197, 2014 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-25160506

RESUMEN

Real-world networks such as the Internet and WWW have many common traits. Until now, hundreds of models were proposed to characterize these traits for understanding the networks. Because different models used very different mechanisms, it is widely believed that these traits origin from different causes. However, we find that a simple model based on optimisation can produce many traits, including scale-free, small-world, ultra small-world, Delta-distribution, compact, fractal, regular and random networks. Moreover, by revising the proposed model, the community-structure networks are generated. By this model and the revised versions, the complicated relationships of complex networks are illustrated. The model brings a new universal perspective to the understanding of complex networks and provide a universal method to model complex networks from the viewpoint of optimisation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...