Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurochem Int ; 178: 105786, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38843952

RESUMEN

Our previous study has identified that glutamate in the red nucleus (RN) facilitates the development of neuropathic pain through metabotropic glutamate receptors (mGluR). Here, we further explored the actions and possible molecular mechanisms of red nucleus mGluR Ⅰ (mGluR1 and mGluR5) in the development of neuropathic pain induced by spared nerve injury (SNI). Our data indicated that both mGluR1 and mGluR5 were constitutively expressed in the RN of normal rats. Two weeks after SNI, the expressions of mGluR1 and mGluR5 were significantly boosted in the RN contralateral to the nerve injury. Administration of mGluR1 antagonist LY367385 or mGluR5 antagonist MTEP to the RN contralateral to the nerve injury at 2 weeks post-SNI significantly ameliorated SNI-induced neuropathic pain. However, unilateral administration of mGluRⅠ agonist DHPG to the RN of normal rats provoked a significant mechanical allodynia, this effect could be blocked by LY367385 or MTEP. Further studies indicated that the expressions of TNF-α and IL-1ß in the RN were also elevated at 2 weeks post-SNI. Administration of mGluR1 antagonist LY367385 or mGluR5 antagonist MTEP to the RN at 2 weeks post-SNI significantly inhibited the elevations of TNF-α and IL-1ß. However, administration of mGluR Ⅰ agonist DHPG to the RN of normal rats significantly enhanced the expressions of TNF-α and IL-1ß, these effects were blocked by LY367385 or MTEP. These results suggest that activation of red nucleus mGluR1 and mGluR5 facilitate the development of neuropathic pain by stimulating the expressions of TNF-α and IL-1ß. mGluR Ⅰ maybe potential targets for drug development and clinical treatment of neuropathic pain.

2.
J Nat Prod ; 79(1): 180-8, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26714198

RESUMEN

Lycorine is a benzylphenethylamine-type alkaloid member of the Amaryllidaceae family. A lycorine derivative, HLY78, was previously identified as a new Wnt/ß-catenin signaling pathway agonist that targets the DAX domain of axin. Herein, the structural optimization of HLY78 and analyses of the structure-activity relationships of lycorine-derived phenanthridine derivatives as agonists of the Wnt/ß-catenin signaling pathway are presented. This research suggests that triazole groups are important pharmacophores for Wnt activation; triazole groups at C-8 and C-9 of phenanthridine compounds markedly enhanced Wnt activation. A C-11-C-12 single bond is also important for Wnt activation. On the basis of these findings, two Wnt agonists were designed and synthesized. The results for these agonists indicated that the combination of a 4-ethyldihydrophenanthridine skeleton and a triazole substituent improves Wnt activation. These compounds may be useful in further pharmacological or biological studies.


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Benzodioxoles/farmacología , Fenantridinas/farmacología , Triazoles/farmacología , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo , Alcaloides de Amaryllidaceae/química , Benzodioxoles/química , Humanos , Estructura Molecular , Fenantridinas/química , Fosforilación , Relación Estructura-Actividad , Triazoles/química , Proteínas Wnt/metabolismo , beta Catenina/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA