Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Eur J Med Res ; 29(1): 236, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622715

RESUMEN

Glycolysis-related metabolic reprogramming is a central hallmark of human cancers, especially in renal cell carcinoma. However, the regulatory function of glycolytic signature in papillary RCC has not been well elucidated. In the present study, the glycolysis-immune predictive signature was constructed and validated using WGCNA, glycolysis-immune clustering analysis. PPI network of DEGs was constructed and visualized. Functional enrichments and patients' overall survival were analyzed. QRT-PCR experiments were performed to detect hub genes' expression and distribution, siRNA technology was used to silence targeted genes; cell proliferation and migration assays were applied to evaluate the biological function. Glucose concentration, lactate secretion, and ATP production were measured. Glycolysis-Immune Related Prognostic Index (GIRPI) was constructed and combined analyzed with single-cell RNA-seq. High-GIRPI signature predicted significantly poorer outcomes and relevant clinical features of pRCC patients. Moreover, GIRPI also participated in several pathways, which affected tumor immune microenvironment and provided potential therapeutic strategy. As a key glycolysis regulator, PFKFB3 could promote renal cancer cell proliferation and migration in vitro. Blocking of PFKFB3 by selective inhibitor PFK-015 or glycolytic inhibitor 2-DG significantly restrained renal cancer cells' neoplastic potential. PFK-015 and sunitinib could synergistically inhibit pRCC cells proliferation. Glycolysis-Immune Risk Signature is closely associated with pRCC prognosis, progression, immune infiltration, and therapeutic response. PFKFB3 may serve as a pivotal glycolysis regulator and mediates Sunitinib resistance in pRCC patients.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Sunitinib/farmacología , Sunitinib/uso terapéutico , Multiómica , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Neoplasias Renales/patología , Pronóstico , Microambiente Tumoral , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo
2.
J Nat Prod ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662578

RESUMEN

Alkaloids with a phenylhydrazone architecture are rarely found in nature. Four unusual phenylhydrazone alkaloids named talarohydrazones A-D (1-4) were isolated from the deep-sea cold seep derived fungus Talaromyces amestolkiae HDN21-0307 using the one strain-many compounds (OSMAC) approach and MS/MS-based molecular networking (MN) combined with network annotation propagation (NAP) and the unsupervised substructure annotation method MS2LDA. Their structures were elucidated by spectroscopic data analysis, single-crystal X-ray diffraction, and quantum chemical calculations. Talarohydrazone A (1) possessed an unusual skeleton combining 2,4-pyridinedione and phenylhydrazone. Talarohydrazone B (2) represents the first natural phenylhydrazone-bearing azadophilone. Bioactivity evaluation revealed that compound 1 exhibited cytotoxic activity against NCI-H446 cells with an IC50 value of 4.1 µM. In addition, compound 1 displayed weak antibacterial activity toward Staphylococcus aureus with an MIC value of 32 µg/mL.

3.
Toxicology ; 504: 153782, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493947

RESUMEN

Tobacco carcinogens are recognized as critical hazard factors for bladder tumorigenesis, affecting the prognosis of patients through aromatic amines components. However, the specific function of tobacco carcinogens and systematic assessment models in the prognosis of bladder cancer remains poorly elucidated. We retrieved bladder cancer specific tobacco carcinogens-related genes from Comparative Toxicogenomic Database, our Nanjing Bladder Cancer cohort and TCGA database. Gene×Gene interaction method was utilized to establish a prognostic signature. Integrative assessment of immunogenomics, tumor microenvironments and single-cell RNA-sequencing were performed to illustrate the internal relations of key events from different levels. Finally, we comprehensively identified 33 essential tobacco carcinogens-related genes to construct a novel prognostic signature, and found that high-risk patients were characterized by significantly worse overall survival (HR=2.25; Plog-rank < 0.01). Single-cell RNA-sequencing and multi-omics analysis demonstrated that cancer-associated fibroblasts mediated the crosstalk between epithelial-mesenchymal transition progression and immune evasion. Moreover, an adverse outcome pathway framework was established to facilitate our understanding to the tobacco carcinogens-triggered bladder tumorigenesis. Our study systematically provided immune microenvironmental alternations for smoking-induced adverse survival outcomes in bladder cancer. These findings facilitated the integrative multi-omics insights into risk assessment and toxic mechanisms of tobacco carcinogens.


Asunto(s)
Fibroblastos Asociados al Cáncer , Transición Epitelial-Mesenquimal , Microambiente Tumoral , Neoplasias de la Vejiga Urinaria , Humanos , Fibroblastos Asociados al Cáncer/inmunología , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Carcinógenos/toxicidad , Regulación Neoplásica de la Expresión Génica , Evasión Inmune , Multiómica , Pronóstico , Análisis de la Célula Individual , Fumar/efectos adversos , Microambiente Tumoral/inmunología , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/inmunología , Neoplasias de la Vejiga Urinaria/patología
4.
J Adv Res ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38382594

RESUMEN

INTRODUCTION: Global warming augments the risk of adverse pregnancy outcomes in vulnerable expectant mothers. Pioneering investigations into heat stress (HS) have predominantly centered on its direct impact on reproductive functions, while the potential roles of gut microbiota, despite its significant influence on distant tissues, remain largely unexplored. Our understanding of deleterious mechanisms of HS and the development of effective intervention strategies to mitigate the detrimental impacts are still limited. OBJECTIVES: In this study, we aimed to explore the mechanisms by which melatonin targets gut microbes to alleviate HS-induced reproductive impairment. METHODS: We firstly evaluated the alleviating effects of melatonin supplementation on HS-induced reproductive disorder in pregnant mice. Microbial elimination and fecal microbiota transplantation (FMT) experiments were then conducted to confirm the efficacy of melatonin through regulating gut microbiota. Finally, a lipopolysaccharide (LPS)-challenged experiment was performed to verify the mechanism by which melatonin alleviates HS-induced reproductive impairment. RESULTS: Melatonin supplementation reinstated gut microbiota in heat stressed pregnant mice, reducing LPS-producing bacteria (Aliivibrio) and increasing beneficial butyrate-producing microflora (Butyricimonas). This restoration corresponded to decreased LPS along the maternal gut-placenta-fetus axis, accompanied by enhanced intestinal and placental barrier integrity, safeguarding fetuses from oxidative stress and inflammation, and ultimately improving fetal weight. Further pseudo-sterile and fecal microbiota transplantation trials confirmed that the protective effect of melatonin on fetal intrauterine growth under HS was partially dependent on gut microbiota. In LPS-challenged pregnant mice, melatonin administration mitigated placental barrier injury and abnormal angiogenesis via the inactivation of the TLR4/MAPK/VEGF signaling pathway, ultimately leading to enhanced nutrient transportation in the placenta and thereby improving the fetal weight. CONCLUSION: Melatonin alleviates HS-induced low fetal weight during pregnancy via the gut-placenta-fetus axis, the first time highlighting the gut microbiota as a novel intervention target to mitigate the detrimental impact of global temperature rise on vulnerable populations.

5.
Environ Toxicol ; 39(5): 2782-2793, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38270278

RESUMEN

Cigarette smoking was known to accelerate the occurrence and development of bladder cancer by regulating RNA modification. However, the association between the combination of cigarette smoking and RNA modification-related single nucleotide polymorphisms (RNAm-SNPs) and bladder cancer risk remains unclear. In this study, 1681 participants, including 580 cases and 1101 controls, were recruited for genetic association analysis. In total, 1 287 990 RNAm-SNPs involving nine RNA modifications (m6A, m1A, m6Am, 2'-O-Me, m5C, m7G, A-to-I, m5U, and pseudouridine modification) were obtained from the RMVar database. The interactive effect of cigarette smoking and RNAm-SNPs on bladder cancer risk was assessed through joint analysis. The susceptibility analysis revealed that 89 RNAm-SNPs involving m6A, m1A, and A-to-I modifications were associated with bladder cancer risk. Among them, m6A-related rs2273058 in CRNKL1 was associated with bladder cancer risk (odds ratios (OR) = 1.35, padj = 1.78 × 10-4), and CRNKL1 expression was increased in bladder cancer patients (p = 0.035). Cigarette smoking combined with the A allele of rs2273058 increased bladder cancer risk compared with nonsmokers with the G allele of rs2273058 (OR = 2.40, padj = 3.11 × 10-9). Mechanistically, the A allele of rs2273058 endowed CRNKL1 with an additional m6A motif, facilitating recognition by m6A reader IGF2BP1, thereby promoting CRNKL1 expression under cigarette smoking (r = 0.142, p = 0.017). Moreover, elevated CRNKL1 expression may accelerate cell cycle and proliferation, thereby increasing bladder cancer risk. In summary, our study demonstrated that cigarette smoking combined with RNAm-SNPs contributes to bladder cancer risk, which provides a potential target for bladder cancer prevention.


Asunto(s)
Fumar Cigarrillos , Neoplasias de la Vejiga Urinaria , Humanos , Fumar Cigarrillos/genética , Factores de Riesgo , Neoplasias de la Vejiga Urinaria/genética , Polimorfismo de Nucleótido Simple , Metilación , ARN , Estudios de Casos y Controles , Proteínas Nucleares/genética
6.
Front Immunol ; 14: 1132661, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37350959

RESUMEN

Background: Renal clear cell carcinoma (ccRCC) is one of the most prevalent cancers worldwide. Accumulating evidence revealed that copper-induced cell death played a vital role in various tumors. However, the underlying mechanism of cuproptosis with molecular heterogeneity and tumor microenvironment (TME) in ccRCC remains to be elucidated. The present study aimed to discover the biological function of cuproptosis regulators with the potential to guide clinical therapy. Methods: Using Single-cell RNA-seq, bulk transcriptome and other multi-omics datasets, we identify essential cuproptosis-related hub gene PDHB for further study. The dysregulation of PDHB in ccRCC was characterized, together with survival outcomes, pathway enrichment and immune infiltration among tumor microenvironments. The functional significance and clinical association of PDHB was validated with loss of function experiments and surgical removal specimens. Results: PDHB mRNA and protein expression level was significantly downregulated in ccRCC tissues compared with normal and paired normal tissues. Clinicopathological parameters and tissue microarray (TMA) indicated that PDHB was identified as a prognostic factor for survival outcomes among ccRCC patients. Additionally, low PDHB was negatively correlated with Treg cells, indicating an immunosuppressive microenvironment. Mechanistically, knockdown PDHB appeared to promote the RCC cells proliferation, migration, and invasion potentials. Subsequent studies showed that copper-induced cell death activation could overcome sunitinib resistance in RCC cells. Conclusion: This research illustrated a cuproptosis-related hub gene PDHB which could serve as a potential prognostic marker and provide therapeutic benefits for clinical treatment of ccRCC patients.


Asunto(s)
Apoptosis , Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Cobre , Neoplasias Renales/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Microambiente Tumoral
7.
Front Immunol ; 14: 1117297, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37056767

RESUMEN

Background: Renal ischemia-reperfusion injury (IRI) is an inevitable occurrence during kidney transplantation. Mitophagy, ferroptosis, and the associated immune microenvironment (IME) have been shown to play important roles in renal IRI. However, the role of mitophagy-associated IME genes in IRI remains unclear. In this study, we aimed to construct a prediction model of IRI prognosis based on mitophagy-associated IME genes. Method: The specific biological characteristics of the mitophagy-associated IME gene signature were comprehensively analyzed using public databases such as GEO, Pathway Unification, and FerrDb. Correlations between the expression of prognostic genes and immune-related genes and IRI prognosis were determined by Cox regression, LASSO analysis, and Pearson's correlation. Molecular validation was performed using human kidney 2 (HK2) cells and culture supernatant as well as the serum and kidney tissues of mice after renal IRI. Gene expression was measured by PCR, and inflammatory cell infiltration was examined by ELISA and mass cytometry. Renal tissue damage was characterized using renal tissue homogenate and tissue sections. Results: The expression of the mitophagy-associated IME gene signature was significantly correlated with IRI prognosis. Excessive mitophagy and extensive immune infiltration were the primary factors affecting IRI. In particular, FUNDC1, SQSTM1, UBB, UBC, KLF2, CDKN1A, and GDF15 were the key influencing factors. In addition, B cells, neutrophils, T cells, and M1 macrophages were the key immune cells present in the IME after IRI. A prediction model for IRI prognosis was constructed based on the key factors associated with the mitophagy IME. Validation experiments in cells and mice indicated that the prediction model was reliable and applicable. Conclusion: We clarified the relationship between the mitophagy-related IME and IRI. The IRI prognostic prediction model based on the mitophagy-associated IME gene signature provides novel insights on the prognosis and treatment of renal IRI.


Asunto(s)
Trasplante de Riñón , Daño por Reperfusión , Ratones , Humanos , Animales , Mitofagia/genética , Riñón/metabolismo , Trasplante de Riñón/efectos adversos , Neutrófilos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo
8.
Research (Wash D C) ; 6: 0025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37040481

RESUMEN

Newborn ruminants are considered functionally monogastric animals. The poor understanding of cellular differences between newborn and mature ruminants prevents the improvement of health and performance of domestic ruminants. Here, we performed the single-cell RNA sequencing on the rumen, reticulum, omasum, abomasum, duodenum, jejunum, ileum, cecum, colon, rectum, liver, salivary gland, and mammary gland from newborn and adult cattle. A comprehensive single-cell transcriptomic atlas covering 235,941 high-quality single cells and 78 cell types was deciphered. A Cattle Cell Landscape database (http://cattlecelllandscape.zju.edu.cn) was established to elaborately display the data and facilitate effective annotation of cattle cell types and subtypes for the broad research community. By measuring stemness states of epithelial cells in each tissue type, we revealed that the epithelial cells from newborn forestomach (rumen, reticulum, and omasum) were more transcriptionally indistinct and stochastic compared with the adult stage, which was in contrast to those of abomasum and intestinal tissues. The rapid forestomach development during the early life of calves was driven by epithelial progenitor-like cells with high DNA repair activities and methylation. Moreover, in the forestomach tissues of newborn calves, the Megasphaera genus was involved in regulating the transcriptional plasticity of the epithelial progenitor-like cells by DNA methylation regulation. A novel cell type, the STOML3+ cell, was found to be newborn-specific. It apparently plays a crucial role in stemness maintenance of its own and cholangiocytes in the hepatic microenvironment. Our results reveal that the age- and microbiota-dependent cell stemness plasticity drives the postnatal functional maturity of ruminants.

9.
J Am Soc Nephrol ; 34(1): 73-87, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719147

RESUMEN

BACKGROUND: Hypoxia and hypoxia-inducible factors (HIFs) play essential and multiple roles in renal ischemia-reperfusion injury (IRI). Dendritic cells (DCs) comprise a major subpopulation of the immunocytes in the kidney and are key initiators and effectors of the innate immune responses after IRI. The role of HIF-2α in DCs remains unclear in the context of renal IRI. METHODS: To investigate the importance of HIF-2α in DCs upon renal IRI, we examined the effects of DC-specific HIF-2α ablation in a murine model. Bone marrow-derived DCs (BMDCs) from DC-specific HIF-2α-ablated mice and wild-type mice were used for functional studies and transcriptional profiling. RESULTS: DC-specific ablation of HIF-2α led to hyperactivation of natural killer T (NKT) cells, ultimately exacerbating murine renal IRI. HIF-2α deficiency in DCs triggered IFN-γ and IL-4 production in NKT cells, along with upregulation of type I IFN and chemokine responses that were critical for NKT cell activation. Mechanistically, loss of HIF-2α in DCs promoted their expression of CD36, a scavenger receptor for lipid uptake, increasing cellular lipid accumulation. Furthermore, HIF-2α bound directly to a reverse hypoxia-responsive element (rHRE) in the CD36 promoter. Importantly, CD36 blockade by sulfo-N-succinimidyl oleate (SSO) reduced NKT cell activation and abolished the exacerbation of renal IRI elicited by HIF-2α knockout. CONCLUSIONS: Our study reveals a previously unrecognized role of the HIF-2α/CD36 regulatory axis in rewiring DC lipid metabolism under IRI-associated hypoxia. These findings suggest a potential therapeutic target to resolve long-standing obstacles in treatment of this severe complication.


Asunto(s)
Riñón , Daño por Reperfusión , Animales , Ratones , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Riñón/metabolismo , Lípidos/farmacología , Daño por Reperfusión/metabolismo
10.
J Transl Med ; 20(1): 603, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36527113

RESUMEN

BACKGROUND: Renal clear cell carcinoma (ccRCC) is the most prevalent tumors worldwide. Discovering effective biomarkers is essential to monitor the prognosis and provide alternative clinical options. SPTBN1 is implicated in various cancerous processes. However, its role in ccRCC remains unelucidated. This study intends to explore the biological function and mechanism of SPTBN1 in ccRCC. METHODS: Single-cell and bulk RNA-seq, tissue microarray, real-time quantitative PCR, and western blotting were applied to verify the expression and predictive value of SPTBN1 in ccRCC. Gain or loss of functional ccRCC cell line models were constructed, and in vitro and in vivo assays were performed to elucidate its tumorigenic phenotypes. Actinomycin D experiment, RNA immunoprecipitation (RIP), specific inhibitors, and rescue experiments were carried out to define the molecular mechanisms. RESULTS: SPTBN1 was down-regulated in ccRCC and knockdown of SPTBN1 displayed a remarkably oncogenic role both in vitro and in vivo; while overexpressing SPTBN1 reversed this effect. SPTBN1 mediated ccRCC progression via the pathway of glutamate pyruvate transaminase 2 (GPT2)-dependent glycolysis. The expression of GPT2 was significantly negatively correlated with that of SPTBN1. As an RNA binding protein SPTBN1, regulated the mRNA stability of GPT2. CONCLUSION: Our research demonstrated that SPTBN1 is significantly down-regulated in ccRCC. SPTBN1 knockdown promotes ccRCC progression via activating GPT2-dependent glycolysis. SPTBN1 may serve as a therapeutic target for the treatment of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Proliferación Celular/genética , Línea Celular Tumoral , Glucólisis , Pronóstico , Regulación Neoplásica de la Expresión Génica , Espectrina/genética , Espectrina/metabolismo , Transaminasas/genética
11.
BMC Biol ; 20(1): 280, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36514051

RESUMEN

BACKGROUND: The rumen is the hallmark organ of ruminants, playing a vital role in their nutrition and providing products for humans. In newborn suckling ruminants milk bypasses the rumen, while in adults this first chamber of the forestomach has developed to become the principal site of microbial fermentation of plant fibers. With the advent of single-cell transcriptomics, it is now possible to study the underlying cell composition of rumen tissues and investigate how this relates the development of mutualistic symbiosis between the rumen and its epithelium-attached microbes. RESULTS: We constructed a comprehensive cell landscape of the rumen epithelium, based on single-cell RNA sequencing of 49,689 high-quality single cells from newborn and adult rumen tissues. Our single-cell analysis identified six immune cell subtypes and seventeen non-immune cell subtypes of the rumen. On performing cross-species analysis of orthologous genes expressed in epithelial cells of cattle rumen and the human stomach and skin, we observed that the species difference overrides any cross-species cell-type similarity. Comparing adult with newborn cattle samples, we found fewer epithelial cell subtypes and more abundant immune cells, dominated by T helper type 17 cells in the rumen tissue of adult cattle. In newborns, there were more fibroblasts and myofibroblasts, an IGFBP3+ epithelial cell subtype not seen in adults, while dendritic cells were the most prevalent immune cell subtype. Metabolism-related functions and the oxidation-reduction process were significantly upregulated in adult rumen epithelial cells. Using 16S rDNA sequencing, fluorescence in situ hybridization, and absolute quantitative real-time PCR, we found that epithelial Desulfovibrio was significantly enriched in the adult cattle. Integrating the microbiome and metabolome analysis of rumen tissues revealed a high co-occurrence probability of Desulfovibrio with pyridoxal in the adult cattle compared with newborn ones while the scRNA-seq data indicated a stronger ability of pyroxidal binding in the adult rumen epithelial cell subtypes. These findings indicate that Desulfovibrio and pyridoxal likely play important roles in maintaining redox balance in the adult rumen. CONCLUSIONS: Our integrated multi-omics analysis provides novel insights into rumen development and function and may facilitate the future precision improvement of rumen function and milk/meat production in cattle.


Asunto(s)
Microbiota , Rumen , Recién Nacido , Humanos , Bovinos , Animales , Rumen/metabolismo , Hibridación Fluorescente in Situ , Microbiota/genética , Rumiantes/genética , Piridoxal/metabolismo , Alimentación Animal/análisis
12.
Am J Cancer Res ; 12(9): 4120-4139, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225649

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a common malignancy of urologic neoplasms. Hepcidin is a pivotal modulator of iron metabolism involved in human cancers; however, the biological significance of hepcidin in ccRCC remains to be fully understood. Therefore, in this study, we evaluated the expression profiles of hepcidin in ccRCC from several public databases and found that hepcidin expression was upregulated in ccRCC, which was further validated in ccRCC cell lines, clinical samples, and tissue microarray (TMA) quantitative real-time PCR and immunohistochemistry. In addition, we found that the expression level of hepcidin was correlated with the age, T stage and pathologic stage of patients. Furthermore, hepcidin promoter methylation was significantly associated with the worse poor clinical parameters of ccRCC patients, and hepcidin was an independent prognostic factor. Mechanistically, enrichment analysis revealed that hepcidin participated in the immune-related and metabolism-related pathways. Hepcidin was positively correlated with not only immune infiltration and immune checkpoints but also tumor mutation burden and cytotoxic T lymphocyte. Finally, we validated the positive correlation of hepcidin with the marker of macrophage (CD68) in the TMA. Our findings provide insights into understanding the function and its underlying mechanism of hepcidin in ccRCC and suggest that hepcidin might serve as a potential predictive biomarker of response to immunotherapy and the prognosis of patients with ccRCC.

13.
Int J Infect Dis ; 125: 209-215, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36243280

RESUMEN

OBJECTIVES: To evaluate the efficacy and safety of low-dose trimethoprim (TMP)-sulfamethoxazole (SMX) (TMP-SMX) as the primary prophylaxis for Pneumocystis jirovecii pneumonia (PJP) in adult recipients of kidney transplantation. METHODS: Three kinds of prescriptions in kidney recipients were documented, including 20 mg TMP/100 mg SMX oral daily, 20 mg TMP/100 mg SMX oral every other day, and nonprophylaxis. The primary outcome was the incidence of PJP in the first 180 days of follow-up after kidney transplantation. The secondary outcomes were changes in renal and liver function. RESULTS: Among the 1469 recipients, 1066 (72.56%) received 20 mg TMP/100 mg SMX daily, 127 (8.65%) received 20 mg TMP/100 mg SMX every other day, and 276 (18.79%) did not have prophylaxis prescription. The 276 recipients in the nonprophylaxis group had 124.92 person-years of follow-up, during which PJP occurred in 29 patients, for an incidence rate of 23.21 (95% confidence interval 15.76-32.72) per 100 person-years. The TMP-SMX daily group and the TMP-SMX every other day group had 524.89 and 62.07 person-years of follow-up, respectively, with no occurrence of PJP. There was no significant difference among the three groups in changes in renal and liver function (P >0.05, respectively). A total of 111 recipients in each group were enrolled in the propensity score matching analysis. It was revealed that the 111 nonprophylaxis recipients had 51.27 person-years of follow-up and 10 PJP cases. Prophylaxis was considered effective because there was a significant difference between the three groups (P <0.001). CONCLUSION: Low-dose TMP-SMX prophylaxis significantly reduces the incidence of PJP within 6 months after kidney transplantation and has a favorable safety profile.


Asunto(s)
Trasplante de Riñón , Pneumocystis carinii , Neumonía por Pneumocystis , Adulto , Humanos , Neumonía por Pneumocystis/tratamiento farmacológico , Combinación Trimetoprim y Sulfametoxazol , Trasplante de Riñón/efectos adversos , Estudios Retrospectivos
15.
Front Genet ; 13: 837343, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35938040

RESUMEN

Circular RNAs (circRNAs) are a special type of endogenous RNAs with extensive roles in multiple human diseases. They are formed by back-splicing of partial sequences of the parental precursor mRNAs. Unlike linear RNAs, their covalently closed loop structure without a 5' cap and a 3' polyadenylated tail confers on them high stability and they are difficult to be digested by RNase R. Increasing evidence has proved that aberrant expressions of many circRNAs are detected and that circRNAs exert essential biological functions in disease development and progression via acting as a molecular sponge of microRNA, interacting with proteins as decoys or scaffolds, or self-encoding small peptides. Circular RNA zinc finger protein 609 (circ-ZNF609) originates from exon2 of ZNF609, which is located at chromosome 15q22.31, and it has recently been proved that it can translate into a protein. Being aberrantly upregulated in various diseases, it could promote malignant progression of human tumors, as well as tumor cell proliferation, migration, and invasion. Here in this review, we concluded the biological functions and potential mechanisms of circ-ZNF609 in multiple diseases, which could be further explored as a targetable molecule in future accurate diagnosis and prognosis.

16.
Stem Cells Int ; 2022: 1981798, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35859725

RESUMEN

Exosomes derived from mesenchymal stem cell (MSC) alleviate kidney damage through autophagy. This study determined whether MSCs relieve renal fibrosis and inhibit autophagy by exosome transfer of miRNA-122a. The gene expression involved in the mTOR signaling pathway and autophagy was assessed in TGF-ß1-treated human renal tubular epithelial cells (HK-2) and unilateral ureteral obstruction (UUO) mice before and after MSC-derived exosomes and miRNA-122a mimic treatment. Small RNA (sRNA) next-generation sequencing was also performed on TGF-ß1-treated HK-2 cells. MSC-derived exosomes relieve fibrosis caused by TGFß in HK-2 via regulation of the mTOR signaling pathway and downstream autophagy. Furthermore, we found that MSC-derived exosomes mediate miRNA-122a to relieve renal fibrosis in HK-2 cells in response to TGF-ß1 through the regulation of mTOR signaling and autophagy. In the UUO mouse model, miRNA-122a mimic-transfected MSC treatment and its combination with 3-MA both recapitulated the same results as the in vitro experiments, along with reduced expansion of renal tubule, interstitial expansion, and preservation of kidney architecture. The antifibrotic activity of MSC-derived exosomes after renal fibrosis occurs partially by autophagy suppression via excreted exosomes containing mainly miRNA-122a. These findings indicate that the export of miRNA-122a via MSC-derived exosomes represents a novel strategy to alleviate renal fibrosis.

17.
Cancer Cell Int ; 22(1): 211, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689211

RESUMEN

BACKGROUND: Studies over the past decade have shown that competitive endogenous RNA (ceRNA) plays an essential role in the tumorigenesis and progression of clear cell renal cell carcinoma (ccRCC). Meanwhile, immune checkpoint blocker is gradually moving towards the first-line treatment of ccRCC. Hence, it's urgent to develop a new prediction model for the efficiency of immunotherapy. At present, there is no study to reveal the effect of ceRNA network on the efficiency of immunotherapy for ccRCC. METHODS: To systematically analyze the effect of ceRNA hub genes in ccRCCon immune response, we constructed prognosis models based on ceRNAs and immune cells, respectively. We constructed ceRNA network using hypergeometric distribution test and correlation analysis with R script based on The Cancer Genome Atlas (TCGA) database. We then applied the Cibersort algorithm to simulate the infiltration overview of immune cells in kidney renal clear carcinoma (KIRC) samples. Prognosis-related immune cells were screened and a predictive model of these cells was constructed. Prognosis-related immune cells and ceRNA hub genes were performed with co-expression analysis. Finally, qRT-PCR and immunofluorescence assays were performed to validate the results. RESULTS: The construction of ceRNA related prognosis model contained 8 hub genes, including RELT, MYO9B, KCNN4, SIX1, OTOGL, MALAT1, hsa-miR-130b-3p, and hsa-miR-21-5p. The area under the receiver operating characteristic curve (AUC) was 0.77 at 5 years. For the construction of immune cells prognosis model, 3 immune cells (T cells regulatory, Macrophages, Mast cells resting) were adopted, and the AUC was 0.65 at 5 years. We then merged the two models by correlation analysis and co-expression analysis. Finally, we found that KCNN4 positively correlates with T cells regulatory (Tregs) and negatively correlates with mast cells resting significantly. Furthermore, higher expression of KCNN4 may lead to a higher potential for immune evasion and lower efficiency for immune checkpoint inhibitors (ICIs). CONCLUSIONS: Generally, this is the first study to assess the prognostic value of immune related ceRNA hub genes in ccRCC, and KCNN4 was finally demonstrated to be a key regulatory factor with strong correlation with Tregs and mast cells resting.

18.
Anim Nutr ; 9: 314-319, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35600547

RESUMEN

Increasing the efficiency and sustainability of cattle production is an effective way to produce valuable animal proteins for a growing human population. Genetics and nutrition are the 2 major research topics in selecting cattle with beneficial phenotypes and developing genetic potentials for improved performance. There is an inextricable link between genetics and nutrition, which urgently requires researchers to uncover the underlying molecular mechanisms to optimize cattle production. Feedomics integrates a range of omic techniques to reveal the mechanisms at different molecular levels related to animal production and health, which can provide novel insights into the relationships of genes and nutrition/nutrients. In this review, we summarized the applications of feedomics techniques to reveal the effect of genetic elements on the response to nutrition and investigate how nutrients affect the functional genome of cattle from the perspective of both nutrigenetics and nutrigenomics. We highlighted the roles of rumen microbiome in the interactions between host genes and nutrition. Herein, we discuss the importance of feedomics in cattle nutrition research, with a view to ensure that cattle exhibit the best production traits for human consumption from both genetic and nutritional aspects.

19.
J Oncol ; 2022: 9411692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35502201

RESUMEN

m6A RNA modification is a common abundant posttranscriptional modification of mRNAs occurring in cancer growth and progression. Accumulated evidence has proved that HNRNPC, which acts as a m6A reader, plays an essential role in the promotion of cancer occurrence and development; nevertheless, the role of HNRNPC in papillary renal cell carcinoma remained to be discovered. In this study, we comprehensively identified HNRNPC as a hub gene involved in m6A modification in pRCC. Then, the expression level, survival outcomes, PPI network, function enrichment, immune cell infiltration, and single-cell analysis were performed. Finally, we found that HNRNPC significantly promoted renal cell carcinoma proliferation and migration in vitro. In conclusion, our work proved that HNRNPC may act as a momentous m6A regulator, as well as a potential targetable biomarker for pRCC.

20.
J Adv Res ; 37: 1-18, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35499046

RESUMEN

Introduction: Dairy cattle are a vitally important ruminant in meeting the demands for high-quality animal protein production worldwide. The complicated biological process of converting human indigestible biomass into highly digestible and nutritious milk is orchestrated by various tissues. However, poorly understanding of the cellular composition and function of the key metabolic tissues hinders the improvement of health and performance of domestic ruminants. Objectives: The cellular heterogeneity, metabolic features, interactions across ten tissue types of lactating dairy cattle were studied at single-cell resolution in the current study. Methods: Unbiased single-cell RNA-sequencing and analysis were performed on the rumen, reticulum, omasum, abomasum, ileum, rectum, liver, salivary gland, mammary gland, and peripheral blood of lactating dairy cattle. Immunofluorescences and fluorescence in situ hybridization were performed to verify cell identity. Results: In this study, we constructed a single-cell landscape covering 88,013 high-quality (500 < genes < 4,000, UMI < 50, 000, and mitochondrial gene ratio < 40% or 15%) single cells and identified 55 major cell types in lactating dairy cattle. Our systematic survey of the gene expression profiles and metabolic features of epithelial cells related to nutrient transport revealed cell subtypes that have preferential absorption of different nutrients. Importantly, we found that T helper type 17 (Th17) cells (highly expressing CD4 and IL17A) were specifically enriched in the forestomach tissues and predominantly interacted with the epithelial cell subtypes with high potential uptake capacities of short-chain fatty acids through IL-17 signaling. Furthermore, the comparison between IL17RAhighIL17RChigh cells (epithelial cells with IL17RA and IL17RC expression levels both greater than 0.25) and other cells explained the importance of Th17 cells in regulating the epithelial cellular transcriptional response to nutrient transport in the forestomach. Conclusion: The findings enhance our understanding of the cellular biology of ruminants and open new avenues for improved animal production of dairy cattle.


Asunto(s)
Lactancia , Transcriptoma , Animales , Bovinos , Femenino , Hibridación Fluorescente in Situ , Lactancia/fisiología , Nutrientes , Rumen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...