Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Res ; 199: 107053, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38176529

RESUMEN

INTRODUCTION: Hypoxia is one of the important reasons for the poor therapeutic efficacy of current pancreatic cancer treatment, and the dense stroma of pancreatic cancer restricts the diffusion of oxygen within the tumor. METHODS: A responsive oxygen-self-supplying adv-miRT-CAT-KR (adv-MCK) cascade reaction system to improve hypoxia in pancreatic cancer is constructed. We utilized various experiments at multiple levels (cells, organoids, in vivo) to investigate its effect on pancreatic cancer and analyzed the role of immune microenvironment changes in it through high-throughput sequencing. RESULTS: The adv-MCK system is an oncolytic adenovirus system expressing three special components of genes. The microRNA (miRNA) targets (miRTs) enable adv-MCK to selectively replicate in pancreatic cancer cells. Catalase catalyzes the overexpressed hydrogen peroxide in pancreatic cancer cells to generate endogenous oxygen, which is catalyzed by killerRed to generate singlet oxygen (1O2) and further to enhance the oncolytic effect. Meanwhile, the adv-MCK system can specifically improve hypoxia in pancreatic cancer, exert antitumor effects in combination with photodynamic therapy, and activate antitumor immunity, especially by increasing the level of γδ T cells in the tumor microenvironment. CONCLUSION: The responsive oxygen-self-supplying adv-MCK cascade reaction system combined with photodynamic therapy can improve the hypoxic microenvironment of pancreatic cancer and enhance antitumor immunity, which provides a promising alternative treatment strategy for pancreatic cancer.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Fotoquimioterapia , Humanos , Oxígeno , Hipoxia/terapia , Neoplasias Pancreáticas/genética , Línea Celular Tumoral , Microambiente Tumoral
2.
Transl Oncol ; 38: 101792, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806114

RESUMEN

Lithium compounds, a classic class of metal complex medicine that target GSK 3ß and are widely known as mood-stabilizer, have recently been reported as potential anti-tumor drugs. The objective of this investigation was to explore the anticancer potential of lithium chloride (LiCl) and elucidate its mode of action in pancreatic cancer cells. The MTT, colony formation, and Edu assay were used to evaluate the impact of LiCl on pancreatic cancer cell proliferation. Various methods were employed to investigate the anti-tumor activity of LiCl and its underlying mechanisms. Cell cycle analysis and apoptosis detection assays were utilized for in vitro experiments, while the orthotopic pancreatic cancer mouse model was employed to evaluate the effectiveness of LiCl treatment in vivo. Furthermore, the impact of LiCl on the proliferation of patient-derived organoids was also studied. The results demonstrated that LiCl inhibited the proliferation of pancreatic cancer (PC) cells, induced G2/M phase arrest, and activated apoptosis. Notably, the triggering of endoplasmic reticulum (ER) stress by LiCl was observed, leading to the activation of the PERK/CHOP/GADD34 pathway, which subsequently promoted apoptosis in PC cells. In the future, Lithium compounds could become an essential adjunct in the treatment of human pancreatic cancer.

3.
Angew Chem Int Ed Engl ; 62(26): e202218148, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37103924

RESUMEN

The frequent mutation of KRAS oncogene in some of the most lethal human cancers has spurred incredible efforts to develop KRAS inhibitors, yet only one covalent inhibitor for the KRASG12C mutant has been approved to date. New venues to interfere with KRAS signaling are desperately needed. Here, we report a "localized oxidation-coupling" strategy to achieve protein-specific glycan editing on living cells for disrupting KRAS signaling. This glycan remodeling method exhibits excellent protein and sugar specificity and is applicable to different donor sugars and cell types. Attachment of mannotriose to the terminal galactose/N-acetyl-D-galactosamine epitopes of integrin αv ß3 , a membrane receptor upstream of KRAS, blocks its binding to galectin-3, suppresses the activation of KRAS and downstream effectors, and mitigates KRAS-driven malignant phenotypes. Our work represents the first successful attempt to interfere with KRAS activity by manipulating membrane receptor glycosylation.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Neoplasias Pulmonares/patología , Mutación , Polisacáridos , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal
4.
Cell Res ; 33(1): 30-45, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36241718

RESUMEN

Mutations of the RAS oncogene are found in around 30% of all human cancers yet direct targeting of RAS is still considered clinically impractical except for the KRASG12C mutant. Here we report that RAS-ON (RASON), a novel protein encoded by the long intergenic non-protein coding RNA 00673 (LINC00673), is a positive regulator of oncogenic RAS signaling. RASON is aberrantly overexpressed in pancreatic ductal adenocarcinoma (PDAC) patients, and it promotes proliferation of human PDAC cell lines in vitro and tumor growth in vivo. CRISPR/Cas9-mediated knockout of Rason in mouse embryonic fibroblasts inhibits KRAS-mediated tumor transformation. Genetic deletion of Rason abolishes oncogenic KRAS-driven pancreatic and lung cancer tumorigenesis in LSL-KrasG12D; Trp53R172H/+ mice. Mechanistically, RASON directly binds to KRASG12D/V and inhibits both intrinsic and GTPase activating protein (GAP)-mediated GTP hydrolysis, thus sustaining KRASG12D/V in the GTP-bound hyperactive state. Therapeutically, deprivation of RASON sensitizes KRAS mutant pancreatic cancer cells and patient-derived organoids to EGFR inhibitors. Our findings identify RASON as a critical regulator of oncogenic KRAS signaling and a promising therapeutic target for KRAS mutant cancers.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , ARN Largo no Codificante , Humanos , Animales , Ratones , ARN Largo no Codificante/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Genes ras , Fibroblastos/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Guanosina Trifosfato , Mutación/genética , Neoplasias Pancreáticas
5.
J Clin Invest ; 133(2)2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36413402

RESUMEN

KRAS is one of the most frequently activated oncogenes in human cancers. Although the role of KRAS mutation in tumorigenesis and tumor maintenance has been extensively studied, the relationship between KRAS and the tumor immune microenvironment is not fully understood. Here, we identified a role of KRAS in driving tumor evasion from innate immune surveillance. In samples of lung adenocarcinoma from patients and Kras-driven genetic mouse models of lung cancer, mutant KRAS activated the expression of cluster of differentiation 47 (CD47), an antiphagocytic signal in cancer cells, leading to decreased phagocytosis of cancer cells by macrophages. Mechanistically, mutant KRAS activated PI3K/STAT3 signaling, which restrained miR-34a expression and relieved the posttranscriptional repression of miR-34a on CD47. In 3 independent cohorts of patients with lung cancer, the KRAS mutation status positively correlated with CD47 expression. Therapeutically, disruption of the KRAS/CD47 signaling axis with KRAS siRNA, the KRASG12C inhibitor AMG 510, or a miR-34a mimic suppressed CD47 expression, enhanced the phagocytic capacity of macrophages, and restored innate immune surveillance. Our results reveal a direct mechanistic link between active KRAS and innate immune evasion and identify CD47 as a major effector underlying the KRAS-mediated immunosuppressive tumor microenvironment.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , MicroARNs , Animales , Humanos , Ratones , Adenocarcinoma del Pulmón/genética , Antígeno CD47/genética , Antígeno CD47/metabolismo , Línea Celular Tumoral , Inmunidad Innata , Neoplasias Pulmonares/metabolismo , MicroARNs/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Microambiente Tumoral
6.
Eur J Med Chem ; 244: 114808, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36228411

RESUMEN

KRASG12C is the most prevalent KRAS mutation in non-small cell lung cancer (NSCLC) and has emerged as a promising therapeutic target. Herein, two series of novel 4(1H)-quinolinone and urea compounds were designed based on the reported KRASG12C inhibitor SH-9. Many compounds showed significantly growth inhibitory activity against human NSCLC cells with KRASG12C mutation in cell viability assays. Compound 20a exhibited an IC50 value of 0.5 µM in KRASG12C-mutant NCI-H358 cells with 21-fold selectivity over KRASWT NCI-H2228 cells. LC-MS analysis indicated that compounds 14c, 14h and 20a covalently bound to KRASG12C rather than KRASWT. Moreover, these compounds could remarkably trap KRASG12C in its inactive state by blocking SOS1-mediated GDP/GTP exchange. Furthermore, treatment of NCI-H358 but not NCI-H2228 cells with 20a dose-dependently reduced the phosphorylation of KRAS downstream effectors ERK and AKT. Importantly, 20a significantly inhibited tumor growth in NCI-H358 xenograft models by suppressing KRASG12C signalling. These results indicate that 20a is a promising candidate worthy of further investigation.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Quinolonas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pulmonares/patología , Quinolonas/farmacología , Quinolonas/uso terapéutico , Urea/farmacología , Urea/uso terapéutico , Línea Celular Tumoral , Mutación
7.
Oncogene ; 41(25): 3394-3408, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35551503

RESUMEN

Pancreatic cancer (PC) is a fatal disease with poor survival and limited therapeutic strategies. In this study, we identified Hesperadin as a potent anti-cancer compound against PC, from a high-throughput screening of a commercial chemical library associated with cell death. Hesperadin induced potent growth inhibition in PC cell lines and patient-derived tumor organoids in a dose- and time-dependent manner, with IC50 values in the nanomolar range. Cellular studies showed that Hesperadin caused mitochondria damage in PC cells, resulting in reactive oxygen species production, ER stress and apoptotic cell death. Transcriptomic analysis using RNA-sequencing data identified GADD45A as a potential target of Hesperadin. Mechanistic studies showed that Hesperadin could increase GADD45A expression in PC cells via ATF4, leading to apoptosis. Moreover, immunohistochemical staining of 92 PC patient samples demonstrated the correlation between ATF4 and GADD45A expression. PC xenograft studies demonstrated that Hesperadin could effectively inhibit the growth of PC cells in vivo. Together, these findings suggest that Hesperadin is a novel drug candidate for PC.


Asunto(s)
Indoles , Neoplasias Pancreáticas , Factor de Transcripción Activador 4/genética , Apoptosis , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Humanos , Indoles/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas , Sulfonamidas/farmacología , Neoplasias Pancreáticas
8.
Gene ; 768: 145303, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33181256

RESUMEN

Comparative genomic analysis within Asian cultivated rice (Oryza sativa L.) populations has greatly enriched our knowledge regarding rice domestication and the divergence of the indica and japonica subspecies, while study on genomic regions associated with improvement within the indica subspecies is still limited. Here, through combined investigation of 2,429 indica cultivar genomes from public sequencing projects, we depict the improvement of modern indica rice in China. We identify three subgroups within indica populations: two geographically distinct, historical subgroups indica I (Ind_I) and indica III (Ind_III) and a modern subgroup indica II (Ind_II). The modern indica subgroup Ind_II shows admixture of the other two subgroups and enrichment of alleles that had been low-frequency in the other two subgroups. The Chinese indica cultivars exhibit a strong subgroup component change from Ind_I to Ind_II in the 1980s. Through haplotype-based comparative analysis, we detect 187 regions associated with separation of Ind_II compared to Ind_I or Ind_III. Within those regions we find strong representation of beneficial agricultural production-related alleles in Ind_II and a positive correlation between grain yield and number of differentiated haplotypes. Phenotypic features of long and slender grain, small tiller angle and decreased flowering time were detected for Ind_II. Through haplotype-based comparative analysis between rice subpopulations and subspecies, we find differentiated haplotypes not only from indica itself but also from japonica and aus, suggesting that introgression from other rice sub-populations has substantially contributed to modern indica rice breeds. These results help clarify the evolutionary landscape of modern indica rice in China and provide useful targets for future improvement.


Asunto(s)
Genoma de Planta/genética , Oryza/genética , Agricultura/métodos , Alelos , Evolución Biológica , Cruzamiento/métodos , China , Productos Agrícolas/genética , Grano Comestible/genética , Evolución Molecular , Flujo Génico/genética , Haplotipos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...