Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Heliyon ; 10(3): e25196, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38322845

RESUMEN

A hybrid laser composed of infrared and blue laser is applied in fabricating TiB2/AlSi7Mg composites on AlSi7Mg substrate by LPBF. The effect on formability, molten pool morphology, molten pool size and microstructure under infrared, blue and hybrid laser were compared. It was confirmed that hybrid laser can make up for the unbalanced energy distribution of infrared laser and the low energy density of blue laser. The increased energy input improves the molten pool size and cellular dendrites size. Therefore, the hybrid laser can improve the formability and forming stability in the LPBF process of low absorption rate alloys.

2.
Int Immunopharmacol ; 127: 111375, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38154213

RESUMEN

Pseudomonas aeruginosa (PA) keratitis is a major cause of blindness characterized by corneal inflammation. In a murine model of PA keratitis, we assessed the detrimental effects of CXC chemokine ligand 16 (CXCL16). Quantitative PCR (qPCR), western blotting (WB) and immunofluorescence were used to measure the expression and localization of CXCL16 and its receptor, CXC chemokine receptor 6 (CXCR6). Clinical scores, plate counting, and hematoxylin-eosin staining were used to assess infection severity and its exacerbation by CXCL16. Immunofluorescence, myeloperoxidase assays, and flow cytometry were used to detect neutrophil activity and colocalization with CXCR6. WB and immunofluorescence were used to measure levels of reactive oxygen species (ROS) and matrix metalloproteinases (MMPs). These methods also were used to measure the activation of downstream NF-κB signaling and its positive feedback on CXCL16 expression. ELISA, flow cytometry, and qPCR were used to measure the expression of CXCL2 and T helper 17 (Th17) cell-related genes. CXCL16 and CXCR6 expression was increased in infected corneas. Topical application of CXCL16 exacerbated keratitis by increasing corneal bacterial load and promoting neutrophil infiltration, whereas neutralizing antibody against CXCL16 had the opposite effect. CXCL16 also increased ROS and MMP levels. This neutrophil activation may be caused by its positive feedback with the NF-κB pathway and the upregulation of CXCL2 and Th17 cell related-genes. These data suggest that CXCL16 is an attractive therapeutic target for PA keratitis.


Asunto(s)
Queratitis , Infecciones por Pseudomonas , Animales , Ratones , Quimiocina CXCL16 , Activación Neutrófila , FN-kappa B/metabolismo , Pseudomonas aeruginosa , Especies Reactivas de Oxígeno
3.
Front Med (Lausanne) ; 10: 1271897, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37937141

RESUMEN

Background: Silicone oil tamponade is widely used in vitreoretinal surgery. In some cases, silicone oil may not be extracted for a long time or even permanently and is referred to as silicone oil-dependent eyes. In this study, we aimed to deduce a theoretical formula for calculating intraocular lens power for silicone oil-dependent eyes and compare it with clinical findings. Methods: A theoretical formula was deduced using strict geometric optical principles and the Gullstrand simplified eye model. The preoperative and postoperative refractive statuses of patients with silicone oil-dependent eyes who underwent intraocular lens implantation were studied (Group A, n = 13). To further test our derived theoretical formula, patients with silicone oil tamponade and first-stage intraocular lens implantation were included (Group B, n = 19). In total, 32 patients (32 eyes) were included in the study. Results: In group A, the calculated intraocular lens power based on our formula was 24.96 ± 3.29 diopters (D), and the actual refraction of the patients was 24.02 ± 4.14D. In group B, the theoretical intraocular lens power was 23.10 ± 3.08D, and the clinical intraocular lens power was 22.84 ± 3.42D. There was no significant difference between the theoretical and clinical refractive powers, and the intraclass correlation coefficient was 0.771 for group A and 0.811 for group B (both p ≤ 0.001). The mean absolute error for silicone oil-dependent eyes of the formula was 1.66 ± 2.09D. After excluding data for two patients with a flat cornea (corneal refractive power < 42D), the mean absolute error decreased to 0.83 ± 0.62D. Conclusion: A strong correlation between the theoretical and clinical intraocular lens powers was observed, and the formula we deduced can be used to calculate the intraocular lens power for silicone oil-dependent eyes. This formula will help clinicians select a more appropriate intraocular lens for patients with silicone oil-dependent eyes, especially when the corneal refractive power is ≥42D.

4.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37687773

RESUMEN

Real-time monitoring of volatile organic compounds (VOCs) is crucial for both industrial production and daily life. However, the non-reactive nature of VOCs and their low concentrations pose a significant challenge for developing sensors. In this study, we investigated the adsorption behaviors of typical VOCs (C2H4, C2H6, and C6H6), on pristine and Pt-decorated SnS monolayers using density functional theory (DFT) calculations. Pristine SnS monolayers have limited charge transfer and long adsorption distances to VOC molecules, resulting in VOC insensitivity. The introduction of Pt atoms promotes charge transfer, creates new energy levels, and increases the overlap of the density of states, thereby enhancing electron excitation and improving gas sensitivity. Pt-decorated SnS monolayers exhibited high sensitivities of 241,921.7%, 35.7%, and 74.3% towards C2H4, C2H6, and C6H6, respectively. These values are 142,306.9, 23.8, and 82.6 times higher than those of pristine SnS monolayers, respectively. Moreover, the moderate adsorption energies of adsorbing C2H6 and C6H6 molecules ensure that Pt-decorated SnS monolayers possess good reversibility with a short recovery time at 298 K. When heated to 498 K, C2H4 molecules desorbs from the surface of Pt-decorated SnS monolayer in 162.33 s. Our results indicate that Pt-decorated SnS monolayers could be superior candidates for sensing VOCs with high selectivity, sensitivity, and reversibility.

5.
Int J Biol Macromol ; 249: 126019, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37542759

RESUMEN

Intelligent hydrogel has great application potentials in flexible sensing and artificial intelligence devices due to its intrinsic characteristics. However, developing an intelligent hydrogel with favorable properties including high strength, superior toughness, excellent conductivity and ionic sensing via a facile route is still a challenge. Herein, inspired by biologically chelating interactions of phytic acid (PA) in plants, a plant-inspired versatile intelligent nanocomposite hydrogel was readily fabricated by incorporating PA into the interface of fluorescent cellulose nanocrystals (F-CNC). Under PA "molecular bridge", the hydrogel simultaneously realized superflexibility (1000 %), high strength, superb self-healing ability, remarkable fluorescence and chloride ion sensibility as well as good ionic conductivity (2.4 S/m). The hydrogel could be assembled as a flexible sensor for real-time monitoring of human motion with excellent sensitivity and stability since high sensitivity toward both strain and pressure. F-CNC acted as a functional trigger could confer the hydrogel good fluorescence and high sensitivity toward chloride ion. This design confirms the synergy of F-CNC in boosting strength, ionic sensing, and ionic conductivity, addressing a long-standing dilemma among strength, stretchability, and sensitivity for intelligent hydrogel. The one-step incorporating tactic under mild ambient conditions may open an innovative avenue for the construction of intelligent hydrogel with novel properties.


Asunto(s)
Inteligencia Artificial , Nanopartículas , Humanos , Nanogeles , Cloruros , Celulosa , Colorantes , Conductividad Eléctrica , Halógenos , Hidrogeles , Ácido Fítico
6.
Int J Public Health ; 68: 1606305, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649691

RESUMEN

Objectives: To evaluate excess deaths of gastrointestinal, liver, and pancreatic diseases in the United States during the COVID-19 pandemic. Methods: We retrieved weekly death counts from National Vital Statistics System and fitted them with a quasi-Poisson regression model. Cause-specific excess deaths were calculated by the difference between observed and expected deaths with adjustment for temporal trend and seasonality. Demographic disparities and temporal-spatial patterns were evaluated for different diseases. Results: From March 2020 to September 2022, the increased mortality (measured by excess risks) for Clostridium difficile colitis, gastrointestinal hemorrhage, and acute pancreatitis were 35.9%; 24.8%; and 20.6% higher than the expected. For alcoholic liver disease, fibrosis/cirrhosis, and hepatic failure, the excess risks were 1.4-2.8 times higher among younger inhabitants than older inhabitants. The excess deaths of selected diseases were persistently observed across multiple epidemic waves with fluctuating trends for gastrointestinal hemorrhage and fibrosis/cirrhosis and an increasing trend for C. difficile colitis. Conclusion: The persistently observed excess deaths of digestive diseases highlights the importance for healthcare authorities to develop sustainable strategies in response to the long-term circulating of SARS-CoV-2 in the community.


Asunto(s)
COVID-19 , Clostridioides difficile , Colitis , Enfermedades Pancreáticas , Pancreatitis , Estados Unidos/epidemiología , Humanos , Enfermedad Aguda , Pandemias , SARS-CoV-2 , Cirrosis Hepática , Hemorragia Gastrointestinal
7.
Front Bioeng Biotechnol ; 11: 1193052, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388766

RESUMEN

A highly sensitive biosensor for detecting HPV 16 DNA was prepared based on Keggin-type polyoxometalate (SiW12)-grafted CdS quantum dots (SiW12@CdS QDs) and colloidal gold nanoparticles (Au NPs), which exhibited remarkable selectivity and sensitivity upon target DNA detection because of its excellent photoelectrochemical (PEC) response. Here, an enhanced photoelectronic response ability was achieved with the strong association of SiW12@CdS QDs by polyoxometalate modification, which was developed through a convenient hydrothermal process. Furthermore, on Au NP-modified indium tin oxide slides, a multiple-site tripodal DNA walker sensing platform coupled with T7 exonuclease was successfully fabricated with SiW12@CdS QDs/NP DNA as a probe for detecting HPV 16 DNA. Due to the remarkable conductivity of Au NPs, the photosensitivity of the as-prepared biosensor was improved in an I3-/I- solution and avoided the use of other regents toxic to living organisms. Finally, under optimized conditions, the as-prepared biosensor protocol demonstrated wide linear ranges (15-130 nM), with a limit of detection of 0.8 nM and high selectivity, stability, and reproducibility. Moreover, the proposed PEC biosensor platform offers a reliable pathway for detecting other biological molecules with nano-functional materials.

8.
J Control Release ; 358: 1-12, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37088305

RESUMEN

Recruiting endogenous stem cells to deliver signaling molecules is an attractive therapeutic strategy for the treatment of skin injuries. Although various signaling molecule delivery techniques have been developed, they are limited in their ability to accurately mimic the natural physiological process in which stem cells are recruited via signaling molecule concentration gradients. Hence, herein, we developed an approach to generate persistent signaling molecule concentration gradients in microscale gel arrays. Signaling molecule concentration gradients were established in each microscale gel via chemical conjugation and were maintained for >12 days. Moreover, the microscale gel provided a suitable environment for bone mesenchymal stem cells (BMSCs) growth, with many BMSCs migrating toward the stromal cell-derived factor-1 alpha (SDF-1α) gradient in vitro. Subsequently, a patch was formulated by mounting a microscale gel array on an adhesive layer and designated as the SDF-1α gradient microscale gel array patch. In a murine full-thickness skin defect model, this patch effectively increased the recruitment of endogenous BMSCs, accelerated wound healing, and enhanced neovascularization. Moreover, the regenerated tissue was more similar to normal skin tissue, as evidenced by histological analysis. The SDF-1α gradient microscale gel array patch also proved its efficacy in a diabetic animal model. Taken together, our findings indicate that the microscale gel array system developed in this study provides an innovative strategy for accelerating wound healing by creating well-defined and localized SDF-1α gradients in vivo. Furthermore, the patch-like design will facilitate on-demand use, thereby further aiding with wound healing.


Asunto(s)
Diabetes Mellitus , Células Madre Mesenquimatosas , Ratones , Animales , Quimiocina CXCL12/farmacología , Cicatrización de Heridas , Piel/lesiones
9.
Mol Immunol ; 158: 35-42, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37104999

RESUMEN

PURPOSE: Here, we explored the protective effects of resolvin D1 (RvD1) in Pseudomonas aeruginosa (PA) keratitis. METHODS: C57BL/6 (B6) mice were used as an animal model of PA keratitis. Plate counting and clinical scores were used to assess the severity of the infection and the therapeutic effects of RvD1 in the model. Myeloperoxidase assay was used to detect neutrophil infiltration and activity. Quantitative PCR (qPCR) was used to examine the expression of proflammatory and anti-inflammatory mediators. Immunofluorescence staining and qPCR were performed to identify macrophage polarization. RESULTS: RvD1 treatment alleviated PA keratitis severity by decreasing corneal bacterial load and inhibiting neutrophil infiltration in the mouse model. Furthermore, RvD1 treatment decreased mRNA levels of TNF-α, IFN-γ, IL-1ß, CXCL1, and S100A8/9 while increasing those of IL-1RA, IL-10, and TGF-ß1. RvD1 treatment also reduced the aggregation of M1 macrophages and increased that of M2 macrophages. RvD1 provided an auxiliary effect in gatifloxacin-treated mice with PA keratitis. CONCLUSION: Based on these findings, RvD1 may improve the prognosis of PA keratitis by inhibiting neutrophil recruitment and activity, dampening the inflammatory response, and promoting M2 macrophage polarization. Thus, RvD1 may be a potential complementary therapy for PA keratitis.


Asunto(s)
Queratitis , Infecciones por Pseudomonas , Ratones , Animales , Pseudomonas aeruginosa , Ratones Endogámicos C57BL , Queratitis/tratamiento farmacológico , Queratitis/metabolismo , Queratitis/microbiología , Ácidos Docosahexaenoicos/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología
10.
BMC Pregnancy Childbirth ; 23(1): 207, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973793

RESUMEN

BACKGROUND: Group B Streptococcus (GBS), also referred as Streptococcus agalactiae, is one of the leading causes of life-threatening invasive diseases such as bacteremia, meningitis, pneumonia and urinary tract infection in pregnant women and neonates. Rates of GBS colonization vary by regions, but large-sample studies on maternal GBS status are limited in southern China. As a result, the prevalence of GBS among pregnant women and its associated risk factors and the efficacy of intrapartum antibiotic prophylaxis (IAP) intervention in preventing adverse pregnancy and neonatal outcomes remain poorly understood in southern China. METHODS: To fill this gap, we retrospectively analyzed demographic and obstetrical data of pregnant women who have undergone GBS screening and delivered between 2016 and 2018 in Xiamen, China. A total of 43,822 pregnant women were enrolled and only a few GBS-positive women did not receive IAP administration. Possible risk factors for GBS colonization were assayed by univariate and multivariate logistic regression analysis. Generalized linear regression model was applicated to analyze whether IAP is one of the impact factors of the hospital length of stay of the target women. RESULTS: The overall GBS colonization rate was 13.47% (5902/43,822). Although women > 35 years old (P = 0.0363) and women with diabetes mellitus (DM, P = 0.001) had a higher prevalence of GBS colonization, the interaction between ages and GBS colonization was not statistically significant in Logistic Regression analysis (adjusted OR = 1.0014; 95% CI, 0.9950, 1.0077). The rate of multiple births was significantly dropped in GBS-positive group than that of GBS-negative group (P = 0.0145), with no significant difference in the rate of fetal reduction (P = 0.3304). Additionally, the modes of delivery and the incidences of abortion, premature delivery, premature rupture of membranes, abnormal amniotic fluid and puerperal infection were not significantly different between the two groups. The hospitalization stays of the subjects were not influenced by GBS infection. As for neonatal outcomes, the cases of fetal death in maternal GBS-positive group did not statistically differ from that in maternal GBS-negative group. CONCLUSION: Our data identified that pregnant women with DM are at high risk of GBS infection and IAP is highly effective in prevention of adverse pregnancy and neonatal outcomes. This stressed the necessity of universal screening of maternal GBS status and IAP administration to the target population in China, and women with DM should be considered as priorities.


Asunto(s)
Complicaciones Infecciosas del Embarazo , Nacimiento Prematuro , Infecciones Estreptocócicas , Recién Nacido , Embarazo , Femenino , Humanos , Adulto , Profilaxis Antibiótica , Estudios Retrospectivos , Streptococcus agalactiae , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Antibacterianos/uso terapéutico , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico , Complicaciones Infecciosas del Embarazo/epidemiología , Complicaciones Infecciosas del Embarazo/prevención & control , Factores de Riesgo , Embarazo Múltiple , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/prevención & control , Infecciones Estreptocócicas/diagnóstico , Nacimiento Prematuro/tratamiento farmacológico
11.
Microbiol Spectr ; 11(1): e0454222, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36655994

RESUMEN

Rapid and reliable diagnosis is important for the management of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid antigen detection test (RADT) is a rapid, inexpensive, and easy method. Several studies have reported that RADTs performed well in many countries; however, very few studies have been reported in China. In this study, we assessed the performance of the RADT (Ediagnosis COVID-19 antigen test kit). This study was conducted in a centralized isolation site in Shanghai and enrolled 716 patients with COVID-19 and 203 noninfected participants. Nasopharyngeal swabs from all participants were collected on the same day and tested using the RADT and real-time reverse transcription-PCR (RT-PCR). The performance of the RADT was evaluated in different scenarios, such as threshold cycle (CT) values, symptomatic phase, and symptoms on the day of testing. The results demonstrated that the sensitivity for patients with CT values lower than 20 was 96.55% (95% confidence interval [CI], 87.05 to 99.4). The sensitivities were 78.4% (95% CI, 69.96 to 85.05) for participants within 5 days after the first RT-PCR-positive result and 90.77% (95% CI, 80.34 to 96.19) within 5 days after symptom onset. Moreover, the sensitivity of the RADT was more than 80% for patients with symptoms on the day of testing, including fever (89.29%), cough (86.84%), stuffy nose (92.59%), runny nose (92%), sore throat (81.25%), and muscle pain (80.77%), especially for those with upper respiratory tract symptoms. The specificity of the RADT was good in all scenarios. During the SARS-CoV-2 epidemic, Ediagnosis performed excellently in individuals with a higher viral load (evidenced by lower CT values), individuals in the early symptomatic phase, and especially those with upper respiratory tract symptoms. IMPORTANCE RADTs have demonstrated excellent performance in many counties for screening SARS-CoV-2 infection, but very few studies have been conducted in China. The performance of RADTs is largely related to different real-life scenarios. In our study, the performance of the RADT was evaluated in different scenarios, such as CT values, symptomatic phase, and symptoms on the day of testing. The results demonstrated that Ediagnosis (an RADT made in China) performed excellently for individuals with a higher viral load (evidenced by lower CT values), individuals in the early symptomatic phase, and especially those with upper respiratory tract symptoms.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Pandemias , China/epidemiología , Prueba de COVID-19
12.
Psychiatry Res ; 321: 115058, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36709699

RESUMEN

The ongoing COVID-19 pandemic is not only an immediate hazard but also a long-term risk to the development of depressive symptoms. However, it remains unclear how people's depressive symptoms change with the process of COVID-19. Further, there is also a paucity of research on the underlying antecedents and outcomes of depressive symptoms during this global health crisis. In this study, a longitudinal study was conducted in China and the data of 559 participants were collected from the outbreak period to the normalization period of the pandemic through self-report questionnaires. Depressive symptoms were longitudinally analyzed using Patient Health Questionnaire-9. Core variables involving society, family, individual cognition, and behaviors were studied as determinants or consequences. Latent growth curve model analyses indicated that college students had mild depressive symptoms at the initial stage of COVID-19 with a subsequent decreasing linear slope. Depressive symptoms were significantly predicted by college students' risk perception of COVID-19, social support, family functioning, and smartphone addiction tendency. Further, their depressive symptoms predicted the changes in smartphone addiction tendency and levels of hope. In conclusion, current findings can provide implications for future prevention and intervention of mental disorders to assist college students through such challenging times.


Asunto(s)
COVID-19 , Humanos , Estudios Longitudinales , Depresión , Pandemias , Estudiantes
13.
Polymers (Basel) ; 15(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36679327

RESUMEN

The high mechanical strength, large specific surface area, favorable biocompatibility, and degradability of nanocellulose (CNC) enable it to be a potential alternative to petroleum-based materials. However, the traditional preparation of CNCs requires a large amount of strong acid, which poses a serious challenge to equipment maintenance, waste liquid recycling, and economics. In this study, a solid and easily recoverable zirconium phosphate (ZrP) was used to assist in the phosphoric acid co-catalyzed hydrolysis of lignocellulose for extracting CNCs. Due to the presence of acidic phosphate groups, ZrP has a strong active center with a high catalytic activity. With the assistance of ZrP, the amount of phosphoric acid used in the reaction is significantly reduced, improving the equipment's durability and economic efficiency. The effects of the process conditions investigated were the phosphate acid concentration, reaction temperature, and reaction time on the yield of CNCs. The Box-Behnken design (BBD) method from the response surface methodology (RSM) was applied to investigate and optimize the preparation conditions. The optimized pre-treatment conditions were 49.27% phosphoric acid concentration, 65.38 °C reaction temperature, and 5 h reaction time with a maximal cellulose yield (48.33%). The obtained CNCs show a granular shape with a length of 40~50 nm and a diameter of 20~30 nm, while its high zeta potential (-24.5 mV) make CNCs present a stable dispersion in aqueous media. Moreover, CNCs have a high crystallinity of 78.70% within the crystal type of cellulose Ⅰ. As such, this study may pioneer the horizon for developing a green method for the efficient preparation of CNC, and it is of great significance for CNCs practical production process.

14.
Polymers (Basel) ; 14(18)2022 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-36145946

RESUMEN

In temperature sensitive hydrogels, the swelling degree or light transmittance of the gel itself changes with variations in ambient temperature, prompting its wide application in controlled drug release, tissue engineering, and material separation. Considering the amphiphilic structure of ß-cyclodextrin (ß-CD), a cellulose-based supramolecular hydrogel with superior temperature sensitivity was synthesized based on a combination of cellulose and ß-CD as well as the host-guest interaction between ß-CD and polypropylene glycol (PPG). In the one-pot tandem reaction process, chemical grafting of ß-CD on cellulose and the inclusion complexation of ß-CD with PPG were performed simultaneously in a NaOH/urea/water system. The obtained supramolecular hydrogel had a lower critical solution temperature (LCST) of 34 °C. There existed covalent bonding between the cellulose and ß-CD, host-guest complexation between the ß-CD and PPG, and hydrogen bonding and hydrophobic interactions between the components in the network structure of the supramolecular hydrogel. The combination of various covalent and non-covalent bonds endowed the resulting supramolecular hydrogel with good internal network structure stability and thermal stability, as well as sensitive temperature responsiveness within a certain range-implying its potential as a smart material in the fields of medicine, biology, and textiles. This work is expected to bring new strategies for the fabrication of cellulose-based thermosensitive materials, benefitting the high-value utilization of cellulose.

15.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35957054

RESUMEN

Based on the self-passivation function of chitosan, an efficient, and green synthesis strategy was applied to prepare chitosan carbon dots (CDs). The quantum yield of carbon dots reached 35% under the conditions of hydrothermal temperature of 200 °C, hydrothermal time of 5 h, and chitosan concentration of 2%. Moreover, the obtained carbon dots had high selectivity and sensitivity to Fe3+. Based on the Schiff base reaction between the aldehyde groups of dialdehyde cellulose nanofibrils (DNF) and the amino groups of CDs, a chemically cross-linked, novel, fluorescent composite film, with high transparency and high strength, was created using one-pot processing. Knowing that the fluorescence effect of the composite film on Fe3+ had a linear relationship in the concentration range of 0-100 µM, a fluorescent probe can be developed for quantitative analysis and detection of Fe3+. Owing to their excellent fluorescent and mechanical properties, the fluorescent nanocomposite films have potential applications in the fields of Fe3+ detection, fluorescent labeling, and biosensing.

16.
Polymers (Basel) ; 14(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35746003

RESUMEN

The high strength, high specific surface area, excellent biocompatibility, and degradability of nanocellulose (NCC) make it a potential reinforcing phase for composite materials. However, the polyhydroxyl property of NCC renders it prone to self-aggregation and it has weak interfacial compatibility with non-polar substrates, limiting its enhancement performance for composite materials. Therefore, based on the high reactivity of NCC, the chemical modification of NCC to introduce functional groups is the basis for effectively reducing its self-aggregation, improving its interfacial compatibility with the polymer matrix, and creating nanocellulose-based functional materials. The existing functional modifications of NCC have limitations; they require cumbersome steps, generate low yields, and are environmentally unfriendly. Herein, ureido-pyrimidinone (UPy) was introduced to NCC through a sustainable and high-efficiency avenue formed by the mechanochemical synergy of microwaves and ultrasonication. The obtained UPy-modified nanocellulose (NCC-UPy) exhibited a rod-like shape, with a length of 200−300 nm and a width of 20−30 nm, which presented oriented and stable dispersion in an aqueous medium, and the zeta potential reached −40 mV. Moreover, NCC-UPy had good thermostability (>350 °C) and high crystallinity (82.5%) within the crystal type of cellulose I. Using the as-prepared NCC-UPy as a molecular bridge, it was organically combined with epoxy resin through multiple hydrogen bonds to construct a nanocomposite membrane with superior mechanical strength and thermal stability. The results revealed that NCC-UPy dispersed uniformly in the epoxy matrix without aggregating and that the interfacial compatibility was good, leading to an 87% increase in the tensile strength of the formed nanocomposite membrane when 0.5 wt.% NCC-UPy was loaded. It was proved that NCC-UPy had remarkable reinforcing potential and effective stress transfer capacity for composites. Consequently, this study may open the door to the development of a one-pot green approach for undertaking the functional modification of NCC, and it is of great significance for the development of NCC-based nanocomposites.

17.
Polymers (Basel) ; 14(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35406185

RESUMEN

Fluorescent cellulose nanofibers (FCNFs), with a high yield, were prepared via one-pot hydrolysis and the grafting reaction of cellulose with thiazolipyridine carboxylic acid (TPCA). The hydrolysis and Fischer esterification of cellulose were conducted under microwave-hydrothermal conditions; meanwhile, TPCA formation was induced by the dehydration reaction between L-cysteine and citric acid. The effects of the reaction temperature and reaction time on the yield and performance of FCNF were investigated. The morphology and size, surface chemical property, crystal structure, thermostability, and fluorescent performance of FCNF were characterized. The results revealed that the yield of FCNF reached 73.2% under a microwave power of 500 W, reaction temperature of 110 °C, and reaction time of 5 h. The FCNF obtained presents a short rod-like morphology. The crystallinity of the FCNFs is 80%, and their thermal stability did not decline significantly. Additionally, the fluorescent performance of the FCNFs is excellent, which results in them having good sensitivity to chloride ions. The good fluorescent performance and significant responsiveness to chloride ions of FCNFs lead to them having broad prospects in bio-labeling, biosensing, information storage, chloride ion detection, among others.

18.
Int J Ophthalmol ; 14(10): 1473-1483, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34667722

RESUMEN

AIM: To investigate the potential interactions of thymic stromal lymphopoietin (TSLP) with interleukin-4 (IL-4) in adaptive immunity during fungal keratitis (FK). METHODS: An FK mouse model was induced with Aspergillus fumigatus (AF) hyphal infection. Mice were divided into several groups: untreated, phosphate buffer saline (PBS), infected with AF, and pretreated with a scrambled siRNA, a TSLP-specific siRNA (TSLP siRNA), murine recombinant TSLP (rTSLP), immunoglobulin G (IgG), murine recombinant IFN (rIFN-γ), murine recombinant IL-4 (rIL-4), rIL-13, murine recombinant IL-17A (rIL-17A), and murine recombinant IL-17F (rIL-17F) groups. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) or Western blot were performed to determine mRNA and protein levels in the inflamed cornea. Cytokine locations were observed by immunofluoresence staining after AF hyphal infection. RESULTS: Compared to those in the untreated group, TSLP and T helper type 1 (Th1) cytokine levels in the AF group were upregulated at 24h post infection (hpi), and those of T helper type 2 (Th2) and T helper type 17 (Th17) cytokines were increased at 5d post infection (dpi). Th2 cytokine levels were decreased in the TSLP siRNA-pretreated group and increased in the rTSLP-pretreated group compared with the AF group. The TSLP level was increased in the rIL-4-pretreated group, but there were no significant changes among the other groups. Immunofluorescence staining showed cytokine locations after AF hyphal infection. CONCLUSION: TSLP induces a Th2 immune response and promots Th2 T cell differentiation in vivo. IL-4 promotes TSLP secretion. Therefore, TSLP with IL-4 regulates adaptive immunity in FK.

19.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(9): 889-895, 2021.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-34535202

RESUMEN

OBJECTIVES: To investigate the incidence of maternal group B Streptococcus (GBS) colonization and neonatal early-onset GBS disease (GBS-EOD), and to study the factors associated with the development of GBS-EOD in the offspring of pregnant women with GBS colonization. METHODS: A total of 16 384 pregnant women and 16 634 neonates delivered by them were enrolled prospectively who had medical records in Xiamen Maternal and Child Care Hospital, Beijing Obstetrics and Gynecology Hospital of Capital Medical University, and Zhangzhou Zhengxing Hospital from May 1, 2019 to April 30, 2020. Unified GBS screening time, culture method, and indication for intrapartum antibiotic prophylaxis (IAP) were adopted in the three hospitals. The incidence rates of maternal GBS colonization and neonatal GBS-EOD were investigated. A multivariate logistic regression analysis was used to identify the factors associated with the development of GBS-EOD in the offspring of pregnant women with GBS colonization. RESULTS: In these three hospitals, the positive rate of GBS culture among the pregnant women in late pregnancy was 11.29% (1 850/16 384), and the incidence rate of neonatal GBS-EOD was 0.96‰ (16/16 634). The admission rate of live infants born to the GBS-positive pregnant women was higher than that of those born to the GBS-negative ones (P<0.05). The live infants born to the GBS-positive pregnant women had a higher incidence rate of GBS-EOD than those born to the GBS-negative ones [6.38‰ (12/1 881) vs 0.27‰ (4/14 725), P<0.05]. The multivariate logistic regression analysis showed that placental swabs positive for GBS and positive GBS in neonatal gastric juice at birth were independent predictive factors for the development of GBS-EOD (P<0.05), while adequate IAP was a protective factor (P<0.05) in the offspring of pregnant women with GBS colonization. CONCLUSIONS: GBS colonization of pregnant women in late pregnancy has adverse effects on their offspring. It is important to determine prenatal GBS colonization status of pregnant women and administer with adequate IAP based on the indications of IAP to reduce the incidence of neonatal GBS-EOD. Citation.


Asunto(s)
Complicaciones Infecciosas del Embarazo , Infecciones Estreptocócicas , Profilaxis Antibiótica , Femenino , Humanos , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Placenta , Embarazo , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico , Complicaciones Infecciosas del Embarazo/epidemiología , Estudios Prospectivos , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/epidemiología , Streptococcus agalactiae
20.
Opt Lett ; 46(15): 3629-3632, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34329242

RESUMEN

Microfluidic techniques have emerged as promising strategies for a wide variety of synthetic or biological sorting. Unfortunately, there is still a lack of sorting with automatic and handy operation. In contrast to passively generated vortices, the thermocapillary vortices produced by temperature gradient have the advantages of flexible manipulation, stable strength, and simple integration. In this Letter, we present a device used for the pump-free separation of particles through vortices interaction without external fluidic control systems required for the majority of existing devices. Specifically, the device induces a different flow type upon the actuation of optical power, and the flow functions, such as simultaneous pumping and sorting, agree with stimulation results very well. More importantly, our developed sorting device can achieve separations by means of tunable cutoff diameter size. Therefore, this versatile device can be utilized to sort complex samples with the advantages of portability, user-friendly control, and automation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...