Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Cell Signal ; 120: 111219, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38723737

RESUMEN

Cardiac remodeling is a critical process following myocardial infarction (MI), potentially leading to heart failure if untreated. The significance of mitochondrial homeostasis in MI remains insufficiently understood. Samm50 is an essential component of mitochondria. Our study aimed to investigate its role in hypoxia-induced cardiac injury and the underlying mechanisms. First, we observed that Samm50 was dynamically downregulated in mice with MI compared to the control mice. In vitro, Samm50 was also downregulated in oxygen-glucose-deprived neonatal rat cardiomyocytes and fibroblasts. Overexpression and knockdown of Samm50 mitigated and exacerbated cardiac apoptosis and fibrosis, while also improving and worsening mitochondrial homeostasis, respectively. Protein interactions with Samm50 during the protective process were identified via immune-coprecipitation/mass spectroscopy. Mechanistically, serine hydroxymethyltransferase 2 (Shmt2) interacted with Samm50, acting as a crucial element in the protective process by hindering the transfer of Bax from the cytoplasm to the mitochondria and subsequent activation of caspase-3. Inhibition of Shmt2 diminished the protective effect of Samm50 overexpression against cardiac injury. Finally, Samm50 overexpression in vivo mitigated cardiac remodeling and enhanced cardiac function in both acute and chronic MI. In conclusion, Samm50 overexpression mitigated hypoxia-induced cardiac remodeling by inhibiting apoptosis and fibrosis, with Shmt2 acting as a key regulator in this protective process. The Samm50/Shmt2 axis represents a newly discovered mitochondria-related pathway for mitigating hypoxia-induced cardiac injury.

2.
Front Immunol ; 15: 1365591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650947

RESUMEN

Background: systemic inflammation disorders were observed in chronic kidney disease (CKD). Whether the systemic inflammatory indicators could be optimal predictors for the survival of CKD remains less studied. Methods: In this study, participants were selected from the datasets of the National Health and Nutrition Examination Survey (NHANES) between 1999 to 2018 years. Four systemic inflammatory indicators were evaluated by the peripheral blood tests including systemic immune-inflammation index (SII, platelet*neutrophil/lymphocyte), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR). Kaplan-Meier curves, restricted cubic spline (RCS), and Cox regression analysis were used to evaluate the association between the inflammatory index with the all-cause mortality of CKD. Receiver operating characteristic (ROC) and concordance index (C-index) were used to determine the predictive accuracy of varied systemic inflammatory indicators. Sensitive analyses were conducted to validate the robustness of the main findings. Results: A total of 6,880 participants were included in this study. The mean age was 67.03 years old. Among the study population, the mean levels of systemic inflammatory indicators were 588.35 in SII, 2.45 in NLR, 133.85 in PLR, and 3.76 in LMR, respectively. The systemic inflammatory indicators of SII, NLR, and PLR were all significantly positively associated with the all-cause mortality of CKD patients, whereas the high value of LMR played a protectable role in CKD patients. NLR and LMR were the leading predictors in the survival of CKD patients [Hazard ratio (HR) =1.21, 95% confidence interval (CI): 1.07-1.36, p = 0.003 (3rd quartile), HR = 1.52, 95%CI: 1.35-1.72, p<0.001 (4th quartile) in NLR, and HR = 0.83, 95%CI: 0.75-0.92, p<0.001 (2nd quartile), HR = 0.73, 95%CI: 0.65-0.82, p<0.001 (3rd quartile), and = 0.74, 95%CI: 0.65-0.83, p<0.001 (4th quartile) in LMR], with a C-index of 0.612 and 0.624, respectively. The RCS curves showed non-linearity between systemic inflammatory indicators and all-cause mortality risk of the CKD population. Conclusion: Our study highlights that systemic inflammatory indicators are important for predicting the survival of the U.S. population with CKD. The systemic inflammatory indicators would add additional clinical value to the health care of the CKD population.


Asunto(s)
Inflamación , Encuestas Nutricionales , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/mortalidad , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/inmunología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Estudios Prospectivos , Inflamación/sangre , Inflamación/inmunología , Neutrófilos/inmunología , Biomarcadores/sangre , Linfocitos/inmunología , Pronóstico , Monocitos/inmunología
4.
Transplant Cell Ther ; 30(5): 500-509, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447750

RESUMEN

BACKGROUND: Recombinant human TPO (rhTPO) promotes platelet engraftment in patients after allogeneic HSCT (allo-HSCT). However, the effects of rhTPO on platelet recovery after Haplo-HSCT in patients with severe aplastic anemia (SAA) have not been intensively studied. OBJECTIVE: We aimed to evaluate the efficacy of rhTPO on platelet engraftment in patients with SAA who were treated with Haplo-HSCT using post-transplantation cyclophosphamide (PTCy). STUDY DESIGN: SAA patients who received Haplo-HSCT plus PTCy regimen were divided into the rhTPO group (with subcutaneous injection of rhTPO, n = 28) and Control group (no rhTPO administration, n = 27). The engraftment of platelet/neutrophil, platelet infusion amount, and transplant-related complications between the 2 groups were compared. RESULTS: All 55 patients showed successful hematopoietic reconstitution. The median time of platelet engraftment was 11 (9 to 29) days in the rhTPO group and 14 (9 to 28) days in the Control group (P = .003). The rhTPO group had a significantly reduced amount of infused platelets compared to the Control group (2 (1 to 11.5) versus 3 (1 to 14) therapeutic doses; P = .004). There was no significant difference between the 2 groups regarding median time of neutrophil engraftment, incidence of acute graft-versus-host disease (aGVHD) and chronic GVHD (cGVHD), incidence of cytomegalovirus or Epstein-Barr virus reactivation, 3-yr overall survival rate, and failure-free-survival rate. No obvious adverse reactions were observed in the rhTPO group. CONCLUSION: rhTPO promoted platelet engraftment, reduced the amount of transfused platelets, and demonstrated good safety profiles without evidence of adverse reactions in patients with SAA who received Haplo-HSCT using PTCy regimen.


Asunto(s)
Anemia Aplásica , Plaquetas , Ciclofosfamida , Trasplante de Células Madre Hematopoyéticas , Proteínas Recombinantes , Trombopoyetina , Humanos , Anemia Aplásica/terapia , Masculino , Ciclofosfamida/uso terapéutico , Femenino , Adulto , Trasplante de Células Madre Hematopoyéticas/métodos , Trombopoyetina/uso terapéutico , Trombopoyetina/administración & dosificación , Adolescente , Proteínas Recombinantes/uso terapéutico , Proteínas Recombinantes/administración & dosificación , Plaquetas/efectos de los fármacos , Persona de Mediana Edad , Adulto Joven , Niño , Enfermedad Injerto contra Huésped , Transfusión de Plaquetas , Trasplante Haploidéntico
5.
Nutrients ; 16(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542681

RESUMEN

Preeclampsia is a primary placental disorder, with impaired placental vascularization leading to uteroplacental hypoperfusion. We aimed to investigate differences in metal and metalloid content between the placentas of women with preeclampsia and healthy controls. This was a case-control study in 63 women with preeclampsia and 113 healthy women. Clinical data were obtained from medical records. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the placental metals and metalloids content. Compared with healthy control subjects, preeclampsia was associated with a significantly lower concentration of essential elements (magnesium, calcium, iron, copper, zinc, and selenium) in the placental tissue. After multivariable adjustment, an interquartile range (IQR) increase in selenium concentration was associated with a reduced risk of preeclampsia with an OR of 0.50 (95% CI: 0.33-0.77). The joint effects of multiple selected metals and metalloids were associated with a reduced risk of preeclampsia. The lower placental magnesium, chromium, iron, zinc, and selenium concentrations of preeclampsia cases indicate a potential link to its pathogenesis. It also provides an intriguing avenue for future research in revealing the underlying mechanisms and potential intervention strategies for preeclampsia.


Asunto(s)
Metaloides , Preeclampsia , Selenio , Embarazo , Femenino , Humanos , Placenta/química , Metaloides/análisis , Estudios de Casos y Controles , Magnesio/análisis , Zinc , Hierro/análisis
6.
Nat Commun ; 15(1): 1946, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431627

RESUMEN

All-small-molecule organic solar cells with good batch-to-batch reproducibility combined with non-halogen solvent processing show great potential for commercialization. However, non-halogen solvent processing of all-small-molecule organic solar cells are rarely reported and its power conversion efficiencies are very difficult to improve. Herein, we designed and synthesized a small molecule donor BM-ClEH that can take advantage of strong aggregation property induced by intramolecular chlorine-sulfur non-covalent interaction to improve molecular pre-aggregation in tetrahydrofuran and corresponding micromorphology after film formation. Tetrahydrofuran-fabricated all-small-molecule organic solar cells based on BM-ClEH:BO-4Cl achieved high power conversion efficiencies of 15.0% in binary device and 16.1% in ternary device under thermal annealing treatment. In contrast, weakly aggregated BM-HEH without chlorine-sulfur non-covalent bond is almost inefficient under same processing conditions due to poor pre-aggregation induced disordered π-π stacking, indistinct phase separation and exciton dissociation. This work promotes the development of non-halogen solvent processing of all-small-molecule organic solar cells and provides further guidance.

7.
Food Chem ; 447: 139013, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38507950

RESUMEN

Formaldehyde is known to harm the respiratory, nervous, and digestive systems of people. In this paper, a novel dandelion-like electrocatalyst with core-shell heterostructure arrays were fast self-assembled prepared in situ using copper foam (CF) as support substrate and 2,3,6,7,10,11 hexahydroxy-triphenyl (HHTP) as ligand (Cu(OH)2@Cu3(HHTP)2/CF) by a simple two-step hydrothermal reaction. The 1D Cu(OH)2 nanorods "core" and the 2D π-conjugated conducting metal-organic frameworks (Cu3(HHTP)2cMOF) "shell" with remote delocalized electrons give the dandelion-like heterogeneous catalysts excellent electrochemical activity such as a large specific surface area, high conductivity and a fast electron transfer rate. The Cu(OH)2@Cu3(HHTP)2/CF exhibited excellent electrocatalytic performance for formaldehyde under alkaline conditions with a linear range of 0.2 µmol/L - 125 µmol/L and 125 µmol/L - 8 mmol/L, a detection limit as low as 15.9 nmol/L (S/N = 3), as well as good accuracy, consistency, and durability, and it effectively identified FA in food.


Asunto(s)
Cobre , Formaldehído , Humanos , Conductividad Eléctrica , Transporte de Electrón , Electrones
8.
Chemistry ; 30(22): e202304024, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38391394

RESUMEN

Formaldehyde is susceptible to illegal addition to foodstuffs to extend their shelf life due to its antimicrobial, preservative and bleaching properties. In this study, a self-supporting "nanosheet on nanosheet" arrays electrocatalyst with core-shell heterostructure was prepared in situ by coupling NiCo layer double hydroxide with 2D ZIF derived Co-nitrogen-doped porous carbon on carbon cloth (Co-N/C@NiCo-LDH NSAs/CC). Co-N/C nanosheet arrays act as a scaffold core with good electrical conductivity, providing more NiCo-LDH nucleation sites to avoid NiCo-LDH agglomeration, thus having fast mass/charge transfer performance. While the NiCo-LDH nanosheet arrays shell with high specific surface area provide more active sites for electrochemical reactions. As an electrocatalytic sensing electrode, Co-N/C@NiCo-LDH NSAs/CC has a wide linear range of 1 µM to 13 mM for formaldehyde detection, and the detection limit is 82 nM. Besides, the sensor has been applied to the detection of formaldehyde in food samples with satisfactory results.

9.
Angew Chem Int Ed Engl ; 63(15): e202400086, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329002

RESUMEN

Fluorine side chain functionalization of non-fullerene acceptors (NFAs) represents an effective strategy for enhancing the performance of organic solar cells (OSCs). However, a knowledge gap persists regarding the relationship between structural changes induced by fluorine functionalization and the resultant impact on device performance. In this work, varying amounts of fluorine atoms were introduced into the outer side chains of Y-series NFAs to construct two acceptors named BTP-F0 and BTP-F5. Theoretical and experimental investigations reveal that side-chain fluorination significantly increase the overall average electrostatic potential (ESP) and charge balance factor, thereby effectively improving the ESP-induced intermolecular electrostatic interaction, and thus precisely tuning the molecular packing and bulk-heterojunction morphology. Therefore, the BTP-F5-based OSC exhibited enhanced crystallinity, domain purity, reduced domain spacing, and optimized phase distribution in the vertical direction. This facilitates exciton diffusion, suppresses charge recombination, and improves charge extraction. Consequently, the promising power conversion efficiency (PCE) of 17.3 % and 19.2 % were achieved in BTP-F5-based binary and ternary devices, respectively, surpassing the PCE of 16.1 % for BTP-F0-based OSCs. This work establishes a structure-performance relationship and demonstrates that fluorine functionalization of the outer side chains of Y-series NFAs is a compelling strategy for achieving ideal phase separation for highly efficient OSCs.

10.
Front Immunol ; 15: 1346001, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375471

RESUMEN

Background: Anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ ALCL) is a rare, mature T-cell non-Hodgkin lymphoma. The prognosis of patients with relapsed or refractory ALCL following first-line chemotherapy is extremely poor. NCCN guidelines recommend intensified chemotherapy with or without ASCT consolidation for r/r ALCL, however, this is not an effective treatment for all ALK+ALCL. Case report: Herein, we report a patient with relapsed/refractory ALK+ ALCL who received crizotinib and brentuximab vedotin as bridging therapy, followed by autologous stem cell transplantation and sequential anti-CD30 CAR T cell therapy. Conclusion: The patient achieved complete remission and long-term disease-free survival of months and continues to be followed up. The combination therapy model in this case may provide guidance for the management of relapsed/refractory ALK+ ALCL, and further prospective trials are needed to confirm its effectiveness.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Inmunoconjugados , Linfoma Anaplásico de Células Grandes , Receptores Quiméricos de Antígenos , Humanos , Brentuximab Vedotina/uso terapéutico , Linfoma Anaplásico de Células Grandes/tratamiento farmacológico , Linfoma Anaplásico de Células Grandes/patología , Crizotinib/uso terapéutico , Receptores Quiméricos de Antígenos/uso terapéutico , Inmunoterapia Adoptiva , Inmunoconjugados/uso terapéutico , Trasplante Autólogo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Proteínas Tirosina Quinasas Receptoras/genética
11.
Adv Mater ; 36(19): e2312311, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38305577

RESUMEN

The exploration of high-performance and low-cost wide-bandgap polymer donors remains critical to achieve high-efficiency nonfullerene organic solar cells (OSCs) beyond current thresholds. Herein, the 1,2,3-benzothiadiazole (iBT), which is an isomer of 2,1,3-benzothiadiazole (BT), is used to design wide-bandgap polymer donor PiBT. The PiBT-based solar cells reach efficiency of 19.0%, which is one of the highest efficiencies in binary OSCs. Systemic studies show that isomerization of BT to iBT can finely regulate the polymers' photoelectric properties including i) increasing the extinction coefficient and photon harvest, ii) downshifting the highest occupied molecular orbital energy levels, iii) improving the coplanarity of polymer backbones, iv) offering good thermodynamic miscibility with acceptors. Consequently, the PiBT:Y6 bulk heterojunction (BHJ) device simultaneously reaches advantageous nanoscale morphology, efficient exciton generation and dissociation, fast charge transportation, and suppressed charge recombination, leading to larger VOC of 0.87 V, higher JSC of 28.2 mA cm-2, greater fill factor of 77.3%, and thus higher efficiency of 19.0%, while the analog-PBT-based OSCs reach efficiency of only 12.9%. Moreover, the key intermediate iBT can be easily afforded from industry chemicals via two-step procedure. Overall, this contribution highlights that iBT is a promising motif for designing high-performance polymer donors.

12.
Food Chem ; 438: 137969, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37976880

RESUMEN

Designing a rapid and sensitive glucose detection method is of great significance to public health. Herein, hollow CuMn-PBA@NiCo-LDH nanoboxes (CuMn-PBA@NiCo-LDH NBs) were prepared using acid etching, cation exchange, and reflux method. The modified electrode exhibited outstanding electrocatalytic performance for glucose oxidation due to the unique hollow nanostructure and synergistic effects. The CuMn-PBA@NiCo-LDH NBs electrode displayed excellent electrocatalytic oxidation activity for glucose in an alkaline solution. Under optimal conditions, the electrode achieved a wide linear range (0.0005-1 mmol L-1, and 1-7 mmol L-1) and high sensitivity (10,300 µA L/mmol cm-2 and 5310 µA L/mmol cm-2), with a limit of detection (LOD) of 19 nmol L-1. The feasibility of the sensor applied to the detection of glucose was verified in real food samples through spiked recovery experiments. This electrode material offers an alternative method for the non-enzymatic glucose sensors.


Asunto(s)
Glucosa , Nanoestructuras , Glucosa/química , Técnicas Electroquímicas/métodos , Nanoestructuras/química , Límite de Detección , Oxidación-Reducción
13.
Ann Hepatol ; 29(1): 101158, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37748752

RESUMEN

INTRODUCTION AND OBJECTIVES: Occult HBV infection (OBI) is a specific form of hepatitis B virus (HBV) infection and has the possibility of developing into hepatocellular carcinoma (HCC) in adults. This study aimed to estimate the global prevalence of occult HBV infection in children and adolescents. MATERIALS AND METHODS: We systematically searched PubMed, Embase, Web of Science, and Cochrane databases for relevant studies on the prevalence of OBI in children and adolescents. Meta-analysis was performed using STATA 16 software. RESULTS: Fifty studies were included. The overall prevalence of OBI in children and adolescents was 7.5% (95% CI: 0.050-0.103). In different risk populations, OBI prevalence was remarkably high in the HIV-infected population (24.2%, 95% CI: 0.000-0.788). The OBI prevalence was 0.8% (95% CI:0.000-0.029) in the healthy population, 3.8% (95% CI:0.012-0.074) in the general population, and 6.4% (95% CI: 0.021-0.124) in children born to HBsAg-positive mothers. Based on different serological profiles, the prevalence of OBI in HBsAg-negative and anti-HBc-positive patients was 6.6% (95% CI: 0.016-0.136), 3.0% (95% CI: 0.009-0.059) in HBsAg-negative and anti-HBc-negative patients, 4.6% (95% CI: 0.015-0.088) in HBsAg-negative and anti-HBs-positive patients, and 3.7% (95% CI: 0.001-0.102) in HBsAg-negative and anti-HBs-negative patients. CONCLUSIONS: Despite HBV vaccination and hepatitis B immunoglobulin (HBIG), OBI is common in children and adolescents in high-risk groups.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B , Neoplasias Hepáticas , Adolescente , Niño , Humanos , ADN Viral , Hepatitis B/diagnóstico , Hepatitis B/epidemiología , Anticuerpos contra la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/epidemiología , Prevalencia
14.
Adv Mater ; 36(15): e2304632, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37418757

RESUMEN

Using two structurally similar polymer acceptors in constructing high-efficiency ternary all-polymer solar cells is a widely acknowledged strategy; however, the focus thus far has not been on how polymer acceptor(s) would tune the aggregation of polymer donors, and furthermore film morphology and device performance (efficiency and stability). Herein, it is reported that matching of the celebrity acceptor PY-IT and the donor PBQx-TCl results in enhanced H-aggregation in PBQx-TCl, which can be finely tuned by controlling the amount of the second acceptor PY-IV. Consequently, the efficiency-optimized PY-IV weight ratio (0.2/1.2) leads to a state-of-the-art power conversion efficiency of 18.81%, wherein light-illuminated operational stability is also enhanced along with well-protected thermal stability. Such enhancements in the efficiency and operational and thermal stabilities of solar cells can be attributed to morphology optimization and the desired glass transition temperature of the target active layer based on comprehensive characterization. In addition to being a high-power conversion efficiency case for all-polymer solar cells, these enhancements are also a successful attempt for using combined acceptors to tune donor aggregation toward optimal morphology, which provides a theoretical basis for the construction of other types of organic photovoltaics beyond all-polymer solar cells.

15.
Head Neck ; 46(3): 528-540, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38111234

RESUMEN

BACKGROUND: We aimed to unbiasedly map the genetic mutation profile of HNSC and CESC associated with HPV status in the Chinese population (SYSU-cohort) and compare them with Western population (TCGA-cohort). METHODS: Fifty-one HNSC patients (SYSU-HNSC) and 38 CESC patients (SYSU-CESC) were enrolled in this study. Genomic alterations were examined, and the profile was produced using the YuanSuTM450 gene panel (OrigiMed, Shanghai, China). The altered genes were inferred and compared to Western patients from TCGA cohorts. RESULTS: Compared to the TCGA-HNSC cohort, FGFR3 mutation was identified as a novel target in SYSU-HNSC with therapeutic potential. Compared to the TCGA-CESC cohort, some epigenetic regulation-associated genes were frequently mutated in SYSU-CESC cohort (KMT2C, KMT2D, KDM5C, KMT2A). CONCLUSION: In summary, our study provides unbiased insights into the genetic landscape of HNSC and CESC in the Chinese population and highlights potential novel therapeutic targets that may benefit Chinese patients.


Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/genética , Epigénesis Genética , China , Neoplasias de Cabeza y Cuello/genética , Mutación
16.
Trop Anim Health Prod ; 56(1): 9, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085433

RESUMEN

Heat stress (HS) can affect growth performance through alterations in specific gut microbiota, which greatly threatens poultry production. How HS affects the mechanisms of microbial changes in the poultry cecum and the complex interactions between cecal microbial changes and growth performance have not yet been well evaluated. This study was conducted to examine the changes in growth performance and cecal microbiotal community in cyclic heat stress (CHS)-treated broilers. A total of 200 twenty-eight-day-old female Arbor Acres (AA) broilers were equally allotted into neutral ambient temperature group (TN group, 24 ± 1°C, 24 h/day) and CHS group (33 ± 1°C, 8 h/day) with five replicates of 10 broilers each, respectively. Growth performance, cecum microbial diversity, flora composition, and community structure were analyzed on days 35 and 42. The decreased average daily feed intake (ADFI), average daily gain (ADG), and the increased feed/gain ratio (F:G) were observed in heat-stressed broilers on days 35 and 42. The alpha and beta diversity index had no significant changes at the two experimental periods (P > 0.05). At the genus level, CHS significantly increased the relative abundance of Enterococcus at 42 days (P < 0.05). Based on the analysis of linear effect size feature selection, CHS made an enriched Reyranella and a reduced Romboutsia and Ruminiclostridium at 35 days of age (P < 0.05). CHS made an enriched Weissella and Enterococcus at 42 days of age (P < 0.05). The present study revealed that CHS reduces broiler growth performance and alters the microbial community of the cecum microbiota and the abundance of species. These findings are of critical importance to alleviate the negative effects of CHS on broiler chickens' growth performance by maintaining gut microbial balance.


Asunto(s)
Suplementos Dietéticos , Microbiota , Animales , Femenino , Suplementos Dietéticos/análisis , Pollos , Ciego , Respuesta al Choque Térmico
17.
Open Med (Wars) ; 18(1): 20230861, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152331

RESUMEN

This study aims to investigate the impact of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) on vascular calcification in rats. The rationale behind studying ENPP1's role in vascular calcification lies in its potential to modulate calcification processes. Understanding this relationship can offer insights into novel therapeutic avenues for addressing vascular calcification-related disorders. In this experiment, vascular smooth muscle cell (VSMC) calcification was induced using ß-glycerophosphoric acid. Subsequently, recombinant AAV9-carrying ENPP1 was introduced into VSMCs to achieve both in vitro and in vivo overexpression of ENPP1. The findings indicate that ENPP1 overexpression significantly reduces calcium and phosphorus content in the aorta (P < 0.05). Alizarin red and von Kossa staining reveal notable reductions in calcium salt deposits in VSMCs and aorta, respectively. Notably, the expression levels of BMP-2, PINP, OC, and BALP were substantially decreased in VSMCs (P < 0.05), underscoring ENPP1's role in impeding osteoblast-like transdifferentiation of VSMCs. Additionally, ENPP1 overexpression led to a significant increase in pyrophosphate (PPi) levels compared to control rats (P < 0.05). In conclusion, this study suggests that ENPP1 contributes to alleviating vascular calcification by elevating PPi levels and inhibiting the phenotypic transformation of VSMCs. These findings shed light on the potential therapeutic role of ENPP1 in mitigating vascular calcification-related complications.

18.
Transl Cancer Res ; 12(10): 2923-2931, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37969362

RESUMEN

Background: Human papillomavirus (HPV) can cause various gynecological diseases, create a long-term inflammatory immune microenvironment, and induce the occurrence of cervical tumors. However, the prevalence of HPV is species-specific in different eras or in different countries and regions. This paper aimed to investigate the characteristics of HPV infection in the Xuhui District, Shanghai City, China. Methods: We collected HPV data from 6,760 female testers, focusing on the younger population for data analysis. We focused more on the HPV subtypes to which young women were susceptible, performed t-Distributed Stochastic Neighbor Embedding (TSNE) analysis to screen for characteristic subtypes, and compared the prevalent subtypes lacking effective vaccine protection. Results: HPV infection exhibited a trend of affecting a younger population, and eight subtypes were more likely to occur in young people. HPV43, 51, 53, and 59 showed a higher incidence and lacked vaccine protection. We performed TSNE dimensionality reduction analysis to organize the HPV data. The results indicated that HPV16, 18, and 51 are characteristic subtypes in the younger population. The Thinprep cytologic test (TCT) also revealed that the infection with HPV43, 51, 53, and 59 also triggers significant pathological phenotypes. Conclusions: HPV51 is a subtype that occurs more frequently in young women, can induce a variety of significant pathological features, and lacks effective vaccine protection. This study inspires us to take measures to deal with HPV rejuvenation and conduct research on vaccines for specific HPV subtypes.

19.
Nanomicro Lett ; 16(1): 30, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37995001

RESUMEN

With plenty of popular and effective ternary organic solar cells (OSCs) construction strategies proposed and applied, its power conversion efficiencies (PCEs) have come to a new level of over 19% in single-junction devices. However, previous studies are heavily based in chloroform (CF) leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component. Herein, we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy, named BTP-BO-3FO with enlarged bandgap, brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9, processed by CF and ortho-xylene (o-XY). With detailed analyses supported by a series of experiments, the best PCE of 19.24% for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif, which furthermore nourishes a favorable charge generation and recombination behavior. Likewise, over 19% PCE can be achieved by replacing spin-coating with blade coating for active layer deposition. This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance, hence, will be instructive to other ternary OSC works in the future.

20.
Nanomicro Lett ; 15(1): 241, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37917278

RESUMEN

Power-conversion-efficiencies (PCEs) of organic solar cells (OSCs) in laboratory, normally processed by spin-coating technology with toxic halogenated solvents, have reached over 19%. However, there is usually a marked PCE drop when the blade-coating and/or green-solvents toward large-scale printing are used instead, which hampers the practical development of OSCs. Here, a new series of N-alkyl-tailored small molecule acceptors named YR-SeNF with a same molecular main backbone are developed by combining selenium-fused central-core and naphthalene-fused end-group. Thanks to the N-alkyl engineering, NIR-absorbing YR-SeNF series show different crystallinity, packing patterns, and miscibility with polymeric donor. The studies exhibit that the molecular packing, crystallinity, and vertical distribution of active layer morphologies are well optimized by introducing newly designed guest acceptor associated with tailored N-alkyl chains, providing the improved charge transfer dynamics and stability for the PM6:L8-BO:YR-SeNF-based OSCs. As a result, a record-high PCE approaching 19% is achieved in the blade-coating OSCs fabricated from a green-solvent o-xylene with high-boiling point. Notably, ternary OSCs offer robust operating stability under maximum-power-point tracking and well-keep > 80% of the initial PCEs for even over 400 h. Our alkyl-tailored guest acceptor strategy provides a unique approach to develop green-solvent and blade-coating processed high-efficiency and operating stable OSCs, which paves a way for industrial development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...