Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 137(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38372383

RESUMEN

Male meiotic division exhibits two consecutive chromosome separation events without apparent pausing. Several studies have shown that spermatocyte divisions are not stringently regulated as in mitotic cells. In this study, we investigated the role of the canonical spindle assembly (SAC) pathway in Caenorhabditis elegans spermatogenesis. We found the intensity of chromosome-associated outer kinetochore protein BUB-1 and SAC effector MDF-1 oscillates between the two divisions. However, the SAC target securin is degraded during the first division and remains undetectable for the second division. Inhibition of proteasome-dependent protein degradation did not affect the progression of the second division but stopped the first division at metaphase. Perturbation of spindle integrity did not affect the duration of meiosis II, and only slightly lengthened meiosis I. Our results demonstrate that male meiosis II is independent of SAC regulation, and male meiosis I exhibits only weak checkpoint response.


Asunto(s)
Caenorhabditis elegans , Huso Acromático , Animales , Masculino , Caenorhabditis elegans/metabolismo , Huso Acromático/metabolismo , Espermatocitos/metabolismo , Meiosis , Cinetocoros/metabolismo , Segregación Cromosómica , Espermatogénesis , Oocitos/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
Thromb Res ; 235: 155-163, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38341989

RESUMEN

BACKGROUND AND AIM: Treating hemophilia A patients who develop inhibitors remains a clinical challenge. A mouse model of hemophilia A can be used to test the efficacy of strategies for inhibitor suppression, but the differences in the immune systems of mice and humans limit its utility. To address this shortcoming, we established a humanized NOD/SCID-IL2rγnull hemophilia A (hu-NSG-HA) mouse model with a severely deficient mouse immune system presenting a patient's adapted immune cells. METHODS AND RESULTS: Through intrasplenic injection with patient inhibitor-positive peripheral blood mononuclear cells (PBMCs), utilizing an adeno-associated viral delivery system expressing human BLyS, and regular FVIII challenge, human C19+ B cells were expanded in vivo to secrete anti-FVIII antibodies. Both the inhibitor and the human anti-FVIII IgG, including the predominant subclasses (IgG1 and IgG4) present in the majority of inhibitor patients, were detected in the mouse model. We further segregated and expanded the different clones of human anti-FVIII-secreting cells through subsequent transplantation of splenocytes derived from hu-NSG-HA mice into another NSG-HA mouse. By transplanting a patient's PBMCs into the NSG-HA mouse model, we demonstrated the success of reintroducing a strong anti-FVIII immune response for a short period in mice with the immune systems of inhibitor-positive patients. CONCLUSION: Our results demonstrate a potential tool for directly obtaining functional human-derived antigen-specific antibodies and antibody-secreting cells, which may have therapeutic value for testing patient-specific immune responses to treatment options to assist in clinical decisions.


Asunto(s)
Hemofilia A , Humanos , Animales , Ratones , Ratones Endogámicos NOD , Ratones SCID , Hemofilia A/tratamiento farmacológico , Leucocitos Mononucleares , Inmunoglobulina G , Modelos Animales de Enfermedad
3.
Opt Express ; 32(1): 167-178, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175046

RESUMEN

Airy light sheets combined with the deconvolution approach can provide multiple benefits, including large field of view (FOV), thin optical sectioning, and high axial resolution. The efficient design of an Airy light-sheet fluorescence microscope requires a compact illumination system. Here, we show that an Airy light sheet can be conveniently implemented in microscopy using a volume holographic grating (VHG). To verify the FOV and the axial resolution of the proposed VHG-based Airy light-sheet fluorescence microscope, ex-vivo fluorescently labeled Caenorhabditis elegans (C. elegans) embryos were imaged, and the Richardson-Lucy deconvolution method was used to improve the image contrast. Optimized parameters for deconvolution were compared with different methods. The experimental results show that the FOV and the axial resolution were 196 µm and 3 µm, respectively. The proposed method of using a compact VHG to replace the common spatial light modulator provides a direct solution to construct a compact light-sheet fluorescence microscope.

5.
Commun Biol ; 6(1): 389, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37037996

RESUMEN

Long-form collapsin response mediator protein-1 (LCRMP-1) belongs to the CRMP family which comprises brain-enriched proteins responsible for axon guidance. However, its role in spermatogenesis remains unclear. Here we find that LCRMP-1 is abundantly expressed in the testis. To characterize its physiological function, we generate LCRMP-1-deficient mice (Lcrmp-1-/-). These mice exhibit aberrant spermiation with apoptotic spermatids, oligospermia, and accumulation of immature testicular cells, contributing to reduced fertility. In the seminiferous epithelial cycle, LCRMP-1 expression pattern varies in a stage-dependent manner. LCRMP-1 is highly expressed in spermatids during spermatogenesis and especially localized to the spermiation machinery during spermiation. Mechanistically, LCRMP-1 deficiency causes disorganized F-actin due to unbalanced signaling of F-actin dynamics through upregulated PI3K-Akt-mTOR signaling. In conclusion, LCRMP-1 maintains spermatogenesis homeostasis by modulating cytoskeleton remodeling for spermatozoa release.


Asunto(s)
Actinas , Proteínas del Tejido Nervioso , Espermátides , Animales , Masculino , Ratones , Actinas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Espermátides/metabolismo , Espermatogénesis/genética , Proteínas del Tejido Nervioso/metabolismo
6.
J Transl Autoimmun ; 6: 100182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36619656

RESUMEN

Primary biliary cholangitis (PBC) is a female-predominant liver autoimmune disease characterized by the specific immune-mediated destruction of the intrahepatic small bile duct. Although apoptosis of biliary epithelial cells (BECs) and alterations in gut microbiota are observed in patients with PBC, it is still unclear whether these events happen in the early stage and cause the breakdown of tolerance in PBC. In this study, we examined the early events in the loss of tolerance in our well-defined 2-OA-OVA-induced murine autoimmune cholangitis (AIC) model. We report herein that apoptosis of BECs was notable in the early stage of murine AIC. An altered gut microbiota, in particular, an increased percentage of gram-positive Firmicutes in AIC mice was also observed. BECs in AIC mice expressed adhesion molecule ICAM-1, cytokines/chemokines TNF-α, CCL2, CXCL9, CXCL10, and toll-like receptor (TLR) 2. Moreover, BECs treated with TLR2 ligand had elevated apoptosis and CXCL10 production. These data collectively suggest a new mechanism of tolerance breakdown in AIC. Altered gut microbiota induces apoptosis of BECs through TLR2 signaling. BECs secrete chemokines to recruit CD8 T cells to damage BECs further.

7.
Development ; 148(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34541605

RESUMEN

Programmed cell death (PCD) is a common cell fate in metazoan development. PCD effectors are extensively studied, but how they are temporally regulated is less understood. Here, we report a mechanism controlling tail-spike cell death onset during Caenorhabditis elegans development. We show that the zinc-finger transcription factor BLMP-1, which controls larval development timing, also regulates embryonic tail-spike cell death initiation. BLMP-1 functions upstream of CED-9 and in parallel to DRE-1, another CED-9 and tail-spike cell death regulator. BLMP-1 expression is detected in the tail-spike cell shortly after the cell is born, and blmp-1 mutations promote ced-9-dependent tail-spike cell survival. BLMP-1 binds ced-9 gene regulatory sequences, and inhibits ced-9 transcription just before cell-death onset. BLMP-1 and DRE-1 function together to regulate developmental timing, and their mammalian homologs regulate B-lymphocyte fate. Our results, therefore, identify roles for developmental timing genes in cell-death initiation, and suggest conservation of these functions.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Muerte Celular/genética , Proteínas Represoras/genética , Transcripción Genética/genética , Animales , Apoptosis/genética , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética
8.
J Antimicrob Chemother ; 76(8): 2049-2056, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33855344

RESUMEN

OBJECTIVES: In the past few decades, multiple-antibiotic-resistant Staphylococcus aureus has emerged and quickly spread in hospitals and communities worldwide. Additionally, the formation of antibiotic-tolerant persisters and biofilms further reduces treatment efficacy. Previously, we identified a sorafenib derivative, SC5005, with bactericidal activity against MRSA in vitro and in vivo. Here, we sought to elucidate the resistance status, mode of action and anti-persister activity of this compound. METHODS: The propensity of S. aureus to develop SC5005 resistance was evaluated by assessment of spontaneous resistance and by multi-passage selection. The mode of action of SC5005 was investigated using macromolecular synthesis, LIVE/DEAD and ATPlite assays and DiOC2(3) staining. The effect of SC5005 on the mammalian cytoplasmic membrane was measured using haemolytic and lactate dehydrogenase (LDH) assays and flow cytometry. RESULTS: SC5005 depolarized and permeabilized the bacterial cytoplasmic membrane, leading to reduced ATP production. Because of this mode of action, no resistance of S. aureus to SC5005 was observed after constant exposure to sub-lethal concentrations for 200 passages. The membrane-perturbing activity of SC5005 was specific to bacteria, as no significant haemolysis or release of LDH from human HT-29 cells was detected. Additionally, compared with other bactericidal antibiotics, SC5005 exhibited superior activity in eradicating both planktonic and biofilm-embedded S. aureus persisters. CONCLUSIONS: Because of its low propensity for resistance development and potent persister-eradicating activity, SC5005 is a promising lead compound for developing new therapies for biofilm-related infections caused by S. aureus.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Humanos , Potenciales de la Membrana , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
9.
Opt Lett ; 45(23): 6478-6481, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33258841

RESUMEN

Three-dimensional (3D) imaging of living organisms requires fine optical sectioning and high-speed image acquisition, which can be achieved by light sheet fluorescence microscopy (LSFM). However, orthogonal illumination and detection arms in the LSFM system make it bulky. Here, we propose and demonstrate the application of a volume holographic optical element (photopolymer-based volume holographic grating) for designing a compact LSFM system, called a volume holographic LSFM (VHLSFM). Using the VHLSFM, we performed in vivo imaging of Caenorhabditis elegans (C. elegans) and observed high-contrast optically sectioned fluorescence images of the oocytes and embryonic development in real time for 3D imaging.

10.
Development ; 147(20)2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32820022

RESUMEN

Seipin, an evolutionary conserved protein, plays pivotal roles during lipid droplet (LD) biogenesis and is associated with various human diseases with unclear mechanisms. Here, we analyzed Caenorhabditis elegans mutants deleted of the sole SEIPIN gene, seip-1 Homozygous seip-1 mutants displayed penetrant embryonic lethality, which is caused by the disruption of the lipid-rich permeability barrier, the innermost layer of the C. elegans embryonic eggshell. In C. elegans oocytes and embryos, SEIP-1 is associated with LDs and is crucial for controlling LD size and lipid homeostasis. The seip-1 deletion mutants reduced the ratio of polyunsaturated fatty acids (PUFAs) in their embryonic fatty acid pool. Interestingly, dietary supplementation of selected n-6 PUFAs rescued the embryonic lethality and defective permeability barrier. Accordingly, we propose that SEIP-1 may maternally regulate LD biogenesis and lipid homeostasis to orchestrate the formation of the permeability barrier for eggshell synthesis during embryogenesis. A lipodystrophy allele of seip-1 resulted in embryonic lethality as well and could be rescued by PUFA supplementation. These experiments support a great potential for using C. elegans to model SEIPIN-associated human diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Cáscara de Huevo/embriología , Genes de Helminto , Proteínas de la Membrana/genética , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/metabolismo , Suplementos Dietéticos , Modelos Animales de Enfermedad , Cáscara de Huevo/efectos de los fármacos , Cáscara de Huevo/ultraestructura , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Ácidos Grasos Insaturados/farmacología , Fertilización , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Gotas Lipídicas/metabolismo , Gotas Lipídicas/ultraestructura , Lipidómica , Proteínas de la Membrana/metabolismo , Mutación/genética , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Oocitos/ultraestructura , Ovulación/efectos de los fármacos , Permeabilidad , Saccharomyces cerevisiae/genética
11.
Dev Biol ; 412(2): 288-297, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26921457

RESUMEN

PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in Caenorhabditis elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Embrión no Mamífero/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Embrión no Mamífero/embriología , Microscopía Confocal , Mutación , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Imagen de Lapso de Tiempo , Técnicas del Sistema de Dos Híbridos
12.
Sci Rep ; 6: 20227, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26832838

RESUMEN

In this study, we demonstrate that an E3-ubiquitin ligase associated with human X-linked intellectual disability, CUL4B, plays a crucial role in post-meiotic sperm development. Initially, Cul4b(Δ)/Y male mice were found to be sterile and exhibited a progressive loss in germ cells, thereby leading to oligoasthenospermia. Adult Cul4b mutant epididymides also contained very low numbers of mature spermatozoa, and these spermatazoa exhibited pronounced morphological abnormalities. In post-meiotic spermatids, CUL4B was dynamically expressed and mitosis of spermatogonia and meiosis of spermatocytes both appeared unaffected. However, the spermatids exhibited significantly higher levels of apoptosis during spermiogenesis, particularly during the acrosome phase through the cap phase. Comparative proteomic analyses identified a large-scale shift between wild-type and Cul4b mutant testes during early post-meiotic sperm development. Ultrastructural pathology studies further detected aberrant acrosomes in spermatids and nuclear morphology. The protein levels of both canonical and non-canonical histones were also affected in an early spermatid stage in the absence of Cul4b. Thus, X-linked CUL4B appears to play a critical role in acrosomal formation, nuclear condensation, and in regulating histone dynamics during haploid male germ cell differentiation in relation to male fertility in mice. Thus, it is possible that CUL4B-selective substrates are required for post-meiotic sperm morphogenesis.


Asunto(s)
Proteínas Cullin/genética , Genes Ligados a X , Infertilidad Masculina/genética , Meiosis/genética , Espermatogénesis/genética , Animales , Diferenciación Celular , Proteínas Cullin/metabolismo , Femenino , Perfilación de la Expresión Génica , Haploidia , Histonas/metabolismo , Infertilidad Masculina/metabolismo , Discapacidad Intelectual/genética , Masculino , Ratones , Ratones Noqueados , Transporte de Proteínas , Espermátides/citología , Espermátides/metabolismo , Espermatozoides/citología , Espermatozoides/metabolismo , Espermatozoides/patología
13.
Genetics ; 190(1): 143-57, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22042574

RESUMEN

Sperm from different species have evolved distinctive motility structures, including tubulin-based flagella in mammals and major sperm protein (MSP)-based pseudopods in nematodes. Despite such divergence, we show that sperm-specific PP1 phosphatases, which are required for male fertility in mouse, function in multiple processes in the development and motility of Caenorhabditis elegans amoeboid sperm. We used live-imaging analysis to show the PP1 phosphatases GSP-3 and GSP-4 (GSP-3/4) are required to partition chromosomes during sperm meiosis. Postmeiosis, tracking fluorescently labeled sperm revealed that both male and hermaphrodite sperm lacking GSP-3/4 are immotile. Genetic and in vitro activation assays show lack of GSP-3/4 causes defects in pseudopod development and the rate of pseudopodial treadmilling. Further, GSP-3/4 are required for the localization dynamics of MSP. GSP-3/4 shift localization in concert with MSP from fibrous bodies that sequester MSP at the base of the pseudopod, where directed MSP disassembly facilitates pseudopod contraction. Consistent with a role for GSP-3/4 as a spatial regulator of MSP disassembly, MSP is mislocalized in sperm lacking GSP-3/4. Although a requirement for PP1 phosphatases in nematode and mammalian sperm suggests evolutionary conservation, we show PP1s have independently evolved sperm-specific paralogs in separate lineages. Thus PP1 phosphatases are highly adaptable and employed across a broad range of sexually reproducing species to regulate male fertility.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Proteína Fosfatasa 1/metabolismo , Motilidad Espermática , Espermatozoides/enzimología , Animales , Evolución Biológica , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Segregación Cromosómica/fisiología , Fertilidad/genética , Masculino , Meiosis/fisiología , Modelos Biológicos , Filogenia , Proteína Fosfatasa 1/genética , Seudópodos/genética , Seudópodos/metabolismo , Espermatogénesis/genética
14.
J Cell Biol ; 189(3): 481-95, 2010 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-20421425

RESUMEN

Cortical pulling on astral microtubules positions the mitotic spindle in response to PAR polarity cues and G protein signaling in many systems. In Caenorhabditis elegans single-cell embryos, posterior spindle displacement depends on Galpha and its regulators GPR-1/2 and LIN-5. GPR-1/2 and LIN-5 are necessary for cortical pulling forces and become enriched at the posterior cortex, which suggests that higher forces act on the posterior spindle pole compared with the anterior pole. However, the precise distribution of cortical forces and how they are regulated remains to be determined. Using spindle severing, single centrosome assays, and centrosome fragmentation, we show that both the anterior and posterior cortices generate more pulling force than the lateral-posterior region. Lateral inhibition depends on LET-99, which inhibits GPR-1/2 localization to produce a bipolar GPR-1/2 pattern. Thus, rather than two domains of cortical force, there are three. We propose that the attenuation of lateral forces prevents counterproductive pulling, resulting in a higher net force toward the posterior that contributes to spindle elongation and displacement.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Embrión no Mamífero/metabolismo , Huso Acromático/fisiología , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/análisis , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mitosis/fisiología
15.
PLoS Genet ; 5(8): e1000611, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19696886

RESUMEN

In most sexually reproducing organisms, the fundamental process of meiosis is implemented concurrently with two differentiation programs that occur at different rates and generate distinct cell types, sperm and oocytes. However, little is known about how the meiotic program is influenced by such contrasting developmental programs. Here we present a detailed timeline of late meiotic prophase during spermatogenesis in Caenorhabditis elegans using cytological and molecular landmarks to interrelate changes in chromosome dynamics with germ cell cellularization, spindle formation, and cell cycle transitions. This analysis expands our understanding C. elegans spermatogenesis, as it identifies multiple spermatogenesis-specific features of the meiotic program and provides a framework for comparative studies. Post-pachytene chromatin of spermatocytes is distinct from that of oocytes in both composition and morphology. Strikingly, C. elegans spermatogenesis includes a previously undescribed karyosome stage, a common but poorly understood feature of meiosis in many organisms. We find that karyosome formation, in which chromosomes form a constricted mass within an intact nuclear envelope, follows desynapsis, involves a global down-regulation of transcription, and may support the sequential activation of multiple kinases that prepare spermatocytes for meiotic divisions. In spermatocytes, the presence of centrioles alters both the relative timing of meiotic spindle assembly and its ultimate structure. These microtubule differences are accompanied by differences in kinetochores, which connect microtubules to chromosomes. The sperm-specific features of meiosis revealed here illuminate how the underlying molecular machinery required for meiosis is differentially regulated in each sex.


Asunto(s)
Caenorhabditis elegans/citología , Meiosis , Espermatogénesis , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Masculino , Espermatozoides/citología , Espermatozoides/crecimiento & desarrollo , Espermatozoides/metabolismo
16.
Dev Biol ; 327(2): 433-46, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19162001

RESUMEN

A close association must be maintained between the male pronucleus and the centrosomes during pronuclear migration. In C. elegans, simultaneous depletion of inner nuclear membrane LEM proteins EMR-1 and LEM-2, depletion of the nuclear lamina proteins LMN-1 or BAF-1, or the depletion of nuclear import components leads to embryonic lethality with small pronuclei. Here, a novel centrosome detachment phenotype in C. elegans zygotes is described. Zygotes with defects in the nuclear envelope had small pronuclei with a single centrosome detached from the male pronucleus. ZYG-12, SUN-1, and LIS-1, which function at the nuclear envelope with dynein to attach centrosomes, were observed at normal concentrations on the nuclear envelope of pronuclei with detached centrosomes. Analysis of time-lapse images showed that as mutant pronuclei grew in surface area, they captured detached centrosomes. Larger tetraploid or smaller histone::mCherry pronuclei suppressed or enhanced the centrosome detachment phenotype respectively. In embryos fertilized with anucleated sperm, only one centrosome was captured by small female pronuclei, suggesting the mechanism of capture is dependent on the surface area of the outer nuclear membrane available to interact with aster microtubules. We propose that the limiting factor for centrosome attachment to the surface of abnormally small pronuclei is dynein.


Asunto(s)
Caenorhabditis elegans , Centrosoma/metabolismo , Membrana Nuclear/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Femenino , Humanos , Masculino , Lámina Nuclear/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
17.
Mol Biol Cell ; 18(11): 4470-82, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17761536

RESUMEN

The conserved PAR proteins are localized in asymmetric cortical domains and are required for the polarized localization of cell fate determinants in many organisms. In Caenorhabditis elegans embryos, LET-99 and G protein signaling act downstream of the PARs to regulate spindle positioning and ensure asymmetric division. PAR-3 and PAR-2 localize LET-99 to a posterior cortical band through an unknown mechanism. Here we report that LET-99 asymmetry depends on cortically localized PAR-1 and PAR-4 but not on cytoplasmic polarity effectors. In par-1 and par-4 embryos, LET-99 accumulates at the entire posterior cortex, but remains at low levels at the anterior cortex occupied by PAR-3. Further, PAR-3 and PAR-1 have graded cortical distributions with the highest levels at the anterior and posterior poles, respectively, and the lowest levels of these proteins correlate with high LET-99 accumulation. These results suggest that PAR-3 and PAR-1 inhibit the localization of LET-99 to generate a band pattern. In addition, PAR-1 kinase activity is required for the inhibition of LET-99 localization, and PAR-1 associates with LET-99. Finally, examination of par-1 embryos suggests that the banded pattern of LET-99 is critical for normal posterior spindle displacement and to prevent spindle misorientation caused by cell shape constraints.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo , Anafase , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Polaridad Celular , Forma de la Célula , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mutación/genética , Proteínas Serina-Treonina Quinasas/genética , Sensibilidad y Especificidad , Huso Acromático/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...