Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 40(10): 2705-2714, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34255880

RESUMEN

Fragrances can cause general health issues, and special concerns exist surrounding the issue of skin safety. Cinnamyl alcohol (CAL) is a frequent fragrance contact allergen that has various toxic effects on indiscriminate animals. In the present study, the photodegradation transformation mechanism of CAL and toxicity evolution during this process were examined. The results showed that CAL (50 µM) can be completely degraded after 90-min ultraviolet (UV) irradiation with a degradation rate of 0.086 min-1 . Increased toxicity on bioluminescent bacteria was observed during this process, with lethality increasing from 10.6% (0 min) to 50.2% (90 min) under UV light irradiation. Further, the photodegradation mechanisms of CAL were explored to find the reason behind the increased toxicity observed. Laser flash photolysis and quenching experiments showed that O2•- , 1 O2 , and • OH were mainly responsible for CAL photodegradation, together with 3 CAL* and eaq- . The 5 main photodegradation products were cinnamyl aldehyde, benzaldehyde, benzenepropanal, cinnamic acid, and toluene, as identified using gas chromatography-mass spectrometry and liquid chromatography-quadrupole-time-of-flight-mass spectrometry. Once exposed to air, CAL was found to be easily oxidized to cinnamyl aldehyde and subsequently to cinnamic acid by O2•- - or 1 O2 -mediated pathways, leading to increased toxicity. Benzaldehyde exhibited bioreactive toxicity, increasing the toxicity through • OH-mediated pathways. Theoretical prediction of skin irritation indicated that cinnamyl aldehyde (0.83), benzenepropanal (0.69), cinnamyl aldehyde (0.69), and benzaldehyde (0.70) were higher than CAL (0.63), which may cause a profound impact on an individual's health and well-being. Overall, the present study advances the understanding of the photodegradation processes and health impacts of fragrance ingredients. Environ Toxicol Chem 2021;40:2705-2714. © 2021 SETAC.


Asunto(s)
Odorantes , Perfumes , Aldehídos , Alérgenos/toxicidad , Animales , Cinética , Perfumes/química , Perfumes/toxicidad , Fotólisis , Propanoles
2.
Ecotoxicol Environ Saf ; 211: 111950, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33493723

RESUMEN

Recently, fragrance ingredients have attracted increasing attention due to their imperceptible risks accompanying the comfortable feeling. To understand transformation mechanisms and toxicity evolution of benzyl formate (BF) in environment, its photochemical degradation in water was thoroughly studied herein. Results showed that 83.5% BF was degraded under ultraviolet (UV) irradiation for 30 min. Laser flash photolysis and quenching experiments demonstrated that triplet excited state (3BF*), O2•-, and 1O2 were three main reactive species found during BF photodegradation. Eight degradation intermediates, including benzaldehyde, benzyl alcohol, o-cresol, bibenzyl, benzyl ether, 1,2-diphenylethanol, benzoic acid, and benzylhemiformal, were mainly formed as identified by LC-Q-TOF/MS and GC-MS analyses. Furthermore, the degradation mechanism was explained as the bond cleavage of 3BF* and BF•+, O2•-/1O2 oxidation, eaq- reduction, and •OH addition reactions. Aquatic assessment suggests that except benzyl alcohol, benzoic acid, and benzylhemiformal, all the products were persistent and could result in increased aquatic toxicity compared to original BF. Consequently, these degradation products may cause more toxicity to organisms if they remain accumulated in water environment for a long time.


Asunto(s)
Formiatos/toxicidad , Procesos Fotoquímicos , Contaminantes Químicos del Agua/toxicidad , Cinética , Luz , Odorantes , Perfumes , Fotólisis , Rayos Ultravioleta , Agua/química , Contaminantes Químicos del Agua/química
3.
Environ Pollut ; 247: 362-370, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30690232

RESUMEN

Short chain chlorinated paraffins (SCCPs) have attracted worldwide attention in recent years, due to their high production volume, persistent, bioaccumulative and toxic properties. In this study, 1-chlorodecane (CD) was selected as a model of SCCPs to explore its photochemical degradation behavior under UV irradiation. The results found that CD could be completely photochemical degradation within 120 min, and the •OH was found to be the main reactive species from both quenching experiments and electron paramagnetic resonance (EPR) results. However, the contribution of triple excited state of CD (3CD*) was still nonnegligible from the results with the absorption peak at 480 nm obtained by laser flash photolysis. Based on the identified intermediates as well as the data from theoretical chemical calculation, the detailed photochemical degradation mechanism of CD was tentatively proposed that CD firstly was excited and photo-ionized under UV irradiation, and the released Cl• in water could result in generating •OH. Then •OH initiates CD degradation mainly through the H-abstraction pathway, leading to the generation of several dehydrogenation radicals, which further generated alcohols or long chain intermediates through radical-radical reactions. The results will provide a comprehensive understanding of the degradation mechanism and environmental fates of SCCPs in water under UV irradiation.


Asunto(s)
Hidrocarburos Clorados/química , Procesos Fotoquímicos , Contaminantes Químicos del Agua/química , Cinética , Luz , Modelos Químicos , Parafina/química , Fotólisis , Rayos Ultravioleta , Agua
4.
J Environ Manage ; 162: 81-6, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26232567

RESUMEN

The effect of potassium ferrate/ultrasonic (K2FeO4/US) treatment on the physicochemical features of textile dyeing sludge was studied. The soluble chemical oxygen demand (SCOD), deoxyribonucleic acid (DNA), sludge volume index (SVI), sludge viscosity, capillary suction time (CST) and particle size were measured to understand the observed changes in the sludge physicochemical features. The results showed that the combined K2FeO4/US treatment presented great advantages for disrupting the sludge floc structure over K2FeO4 or ultrasonic treatments alone. The optimal parameters of sludge disintegration were found to be a K2FeO4 treatment time of 60 min, a K2FeO4 dosage of 0.5936 g/g SS, an ultrasonic time of 15 min and an ultrasonic intensity of 0.72 W/mL. The initial median diameter of the sludge particles was 15.24 µm, and this value decreased by 35.89%. The CST was initially 59.6 s and increased by 231%, whereas the SVI was 97.78 mL/g and decreased by 25.89%. Scanning electron microscope (SEM) images indicated that the sludge surface was irregular and loose with a large amount of channels or voids during K2FeO4/US treatment. K2FeO4/US treatment synergistically enhanced the sludge solubilization and reached 668.67 mg/L SCOD, which is 31.81% greater than the additive value obtained with K2FeO4 treatment alone (215.95 mg/L) or with ultrasonic treatment alone (240 mg/L).


Asunto(s)
Residuos Industriales , Compuestos de Hierro/química , Compuestos de Potasio/química , Aguas del Alcantarillado/química , Ultrasonido/métodos , Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno , Colorantes/química , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Textiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...