Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Mol Biol ; 435(24): 168337, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37918563

RESUMEN

Identifying residues critical to protein-protein binding and efficient design of stable and specific protein binders are challenging tasks. Extending beyond the direct contacts in a protein-protein binding interface, our study employs computational modeling to reveal the essential network of residue interactions and dihedral angle correlations critical in protein-protein recognition. We hypothesized that mutating residues exhibiting highly correlated dynamic motion within the interaction network could efficiently optimize protein-protein interactions to create tight and selective protein binders. We tested this hypothesis using the ubiquitin (Ub) and MERS coronaviral papain-like protease (PLpro) complex, since Ub is a central player in multiple cellular functions and PLpro is an antiviral drug target. Our designed ubiquitin variant (UbV) hosting three mutated residues displayed a ∼3,500-fold increase in functional inhibition relative to wild-type Ub. Further optimization of two C-terminal residues within the Ub network resulted in a KD of 1.5 nM and IC50 of 9.7 nM for the five-point Ub mutant, eliciting 27,500-fold and 5,500-fold enhancements in affinity and potency, respectively, as well as improved selectivity, without destabilizing the UbV structure. Our study highlights residue correlation and interaction networks in protein-protein interactions, and introduces an effective approach to design high-affinity protein binders for cell biology research and future therapeutics.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Ubiquitina , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Unión Proteica , Ubiquitina/química , Ubiquitina/metabolismo , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo
2.
Mol Cell ; 83(22): 4123-4140.e12, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37848033

RESUMEN

Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.


Asunto(s)
Ligasas , Melanoma , Humanos , Células HeLa , Ubiquitinación , Ubiquitinas
3.
Cell Death Dis ; 14(10): 671, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821451

RESUMEN

Aberrant overexpression or activation of EGFR drives the development of non-small cell lung cancer (NSCLC) and acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) by secondary EGFR mutations or c-MET amplification/activation remains as a major hurdle for NSCLC treatment. We previously identified WDR4 as a substrate adaptor of Cullin 4 ubiquitin ligase and an association of WDR4 high expression with poor prognosis of lung cancer. Here, using an unbiased ubiquitylome analysis, we uncover PTPN23, a component of the ESCRT complex, as a substrate of WDR4-based ubiquitin ligase. WDR4-mediated PTPN23 ubiquitination leads to its proteasomal degradation, thereby suppressing lysosome trafficking and degradation of wild type EGFR, EGFR mutant, and c-MET. Through this mechanism, WDR4 sustains EGFR and c-MET signaling to promote NSCLC proliferation, migration, invasion, stemness, and metastasis. Clinically, PTPN23 is downregulated in lung cancer and its low expression correlates with WDR4 high expression and poor prognosis. Targeting WDR4-mediated PTPN23 ubiquitination by a peptide that competes with PTPN23 for binding WDR4 promotes EGFR and c-MET degradation to block the growth and progression of EGFR TKI-resistant NSCLC. These findings identify a central role of WDR4/PTPN23 axis in EGFR and c-MET trafficking and a potential therapeutic target for treating EGFR TKI-resistant NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Receptores ErbB/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Resistencia a Antineoplásicos/genética , Mutación , Ubiquitinación , Ubiquitina/metabolismo , Línea Celular Tumoral , Ligasas/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo
4.
Nucleic Acids Res ; 51(18): 10049-10058, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37665001

RESUMEN

PmrA, an OmpR/PhoB-family response regulator, triggers gene transcription responsible for polymyxin resistance in bacteria by recognizing promoters where the canonical-35 element is replaced by the pmra-box, representing the PmrA recognition sequence. Here, we report a cryo-electron microscopy (cryo-EM) structure of a bacterial PmrA-dependent transcription activation complex (TAC) containing a PmrA dimer, an RNA polymerase σ70 holoenzyme (RNAPH) and the pbgP promoter DNA. Our structure reveals that the RNAPH mainly contacts the PmrA C-terminal DNA-binding domain (DBD) via electrostatic interactions and reorients the DBD three base pairs upstream of the pmra-box, resulting in a dynamic TAC conformation. In vivo assays show that the substitution of the DNA-recognition residue eliminated its transcriptional activity, while variants with altered RNAPH-interacting residues resulted in enhanced transcriptional activity. Our findings suggest that both PmrA recognition-induced DNA distortion and PmrA promoter escape play crucial roles in its transcriptional activation.


Asunto(s)
Proteínas Bacterianas , Activación Transcripcional , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , ADN/genética , ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Klebsiella pneumoniae/metabolismo , Transcripción Genética
5.
ACS Synth Biol ; 12(8): 2310-2319, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37556858

RESUMEN

We used the deep learning tool ProteinMPNN to redesign ubiquitin (Ub) as a specific and functionally stimulating/enhancing binder of the Rsp5 E3 ligase. We generated 20 extensively mutated─up to 37 of 76 residues─recombinant Ub variants (UbVs), named R1 to R20, displaying well-folded structures and high thermal stabilities. These UbVs can also form stable complexes with Rsp5, as predicted using AlphaFold2. Three of the UbVs bound to Rsp5 with low micromolar affinity, with R4 and R12 effectively enhancing the Rsp5 activity six folds. AlphaFold2 predicts that R4 and R12 bind to Rsp5's exosite in an identical manner to the Rsp5-Ub template, thereby allosterically activating Rsp5-Ub thioester formation. Thus, we present a virtual solution for rapidly and cost-effectively designing UbVs as functional modulators of Ub-related enzymes.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo
6.
Res Sq ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333350

RESUMEN

Identifying critical residues in protein-protein binding and efficiently designing stable and specific protein binders to target another protein is challenging. In addition to direct contacts in a protein-protein binding interface, our study employs computation modeling to reveal the essential network of residue interaction and dihedral angle correlation critical in protein-protein recognition. We propose that mutating residues regions exhibited highly correlated motions within the interaction network can efficiently optimize protein-protein interactions to create tight and selective protein binders. We validated our strategy using ubiquitin (Ub) and MERS coronaviral papain-like protease (PLpro) complexes, where Ub is one central player in many cellular functions and PLpro is an antiviral drug target. Molecular dynamics simulations and experimental assays were used to predict and verify our designed Ub variant (UbV) binders. Our designed UbV with 3 mutated residues resulted in a ~3,500-fold increase in functional inhibition, compared with the wild-type Ub. Further optimization by incorporating 2 more residues within the network, the 5-point mutant achieved a KD of 1.5 nM and IC50 of 9.7 nM. The modification led to a 27,500-fold and 5,500-fold enhancements in affinity and potency, respectively, as well as improved selectivity, without destabilizing the UbV structure. Our study illustrates the importance of residue correlation and interaction networks in protein-protein interaction and introduces a new approach that can effectively design high affinity protein binder for cell biology studies and future therapeutic solution.

7.
Nat Commun ; 14(1): 3050, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237031

RESUMEN

Activation of tumor-intrinsic innate immunity has been a major strategy for improving immunotherapy. Previously, we reported an autophagy-promoting function of the deubiquitinating enzyme TRABID. Here, we identify a critical role of TRABID in suppressing anti-tumor immunity. Mechanistically, TRABID is upregulated in mitosis and governs mitotic cell division by removing K29-linked polyubiquitin chain from Aurora B and Survivin, thereby stabilizing the entire chromosomal passenger complex. TRABID inhibition causes micronuclei through a combinatory defect in mitosis and autophagy and protects cGAS from autophagic degradation, thereby activating the cGAS/STING innate immunity pathway. Genetic or pharmacological inhibition of TRABID promotes anti-tumor immune surveillance and sensitizes tumors to anti-PD-1 therapy in preclinical cancer models in male mice. Clinically, TRABID expression in most solid cancer types correlates inversely with an interferon signature and infiltration of anti-tumor immune cells. Our study identifies a suppressive role of tumor-intrinsic TRABID in anti-tumor immunity and highlights TRABID as a promising target for sensitizing solid tumors to immunotherapy.


Asunto(s)
Neoplasias , Nucleotidiltransferasas , Proteasas Ubiquitina-Específicas , Animales , Masculino , Ratones , Autofagia , Inmunidad Innata , Mitosis , Neoplasias/tratamiento farmacológico , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
8.
bioRxiv ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36993448

RESUMEN

Identifying critical residues in protein-protein binding and efficiently designing stable and specific protein binders is challenging. In addition to direct contacts in a protein-protein binding interface, our study employs computation modeling to reveal the essential network of residue interaction and dihedral angle correlation critical in protein-protein recognition. We propose that mutating residues regions exhibited highly correlated motions within the interaction network can efficiently optimize protein-protein interactions to create tight and selective protein binders. We validated our strategy using ubiquitin (Ub) and MERS coronaviral papain-like protease (PLpro) complexes, where Ub is one central player in many cellular functions and PLpro is an antiviral drug target. Our designed UbV with 3 mutated residues resulted in a ~3,500-fold increase in functional inhibition, compared with the wild-type Ub. Further optimization by incorporating 2 more residues within the network, the 5-point mutant achieved a KD of 1.5 nM and IC50 of 9.7 nM. The modification led to a 27,500-fold and 5,500-fold enhancements in affinity and potency, respectively, as well as improved selectivity, without destabilizing the UbV structure. Our study highlights residue correlation and interaction networks in protein-protein interaction, introduces an effective approach to design high affinity protein binders for cell biology and future therapeutics solutions.

9.
J Struct Biol ; 215(2): 107958, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36997036

RESUMEN

Determination of sub-100 kDa (kDa) structures by cryo-electron microscopy (EM) is a longstanding but not straightforward goal. Here, we present a 2.9-Å cryo-EM structure of a 723-amino acid apo-form malate synthase G (MSG) from Escherichia coli. The cryo-EM structure of the 82-kDa MSG exhibits the same global folding as structures resolved by crystallography and nuclear magnetic resonance (NMR) spectroscopy, and the crystal and cryo-EM structures are indistinguishable. Analyses of MSG dynamics reveal consistent conformational flexibilities among the three experimental approaches, most notably that the α/ß domain exhibits structural heterogeneity. We observed that sidechains of F453, L454, M629, and E630 residues involved in hosting the cofactor acetyl-CoA and substrate rotate differently between the cryo-EM apo-form and complex crystal structures. Our work demonstrates that the cryo-EM technique can be used to determine structures and conformational heterogeneity of sub-100 kDa biomolecules to a quality as high as that obtained from X-ray crystallography and NMR spectroscopy.


Asunto(s)
Escherichia coli , Malato Sintasa , Microscopía por Crioelectrón/métodos , Conformación Molecular , Cristalografía por Rayos X
10.
J Am Chem Soc ; 144(30): 13888-13894, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35857020

RESUMEN

Fibrils of the hamster prion peptide (sHaPrP, sequence 108-144) were prepared in an acidic solution, and their structure was solved by cryogenic electron microscopy with a resolution of 2.23 Å based on the gold-standard Fourier shell correlation (FSC) curve. The fibril has a novel architecture that has never been found in other amyloid fibrils. Each fibril is assembled by four protofilaments (PFs) and has an ordered water channel in the center. Each protofilament contains three ß-strands (125-130, 133-135, and 138-141) arranged in an "R"-shaped construct. The structural data indicate that these three ß-strand segments are the most amyloidogenic region of the prion peptide/protein and might be the site of nucleation during fibrillization under conditions without denaturants.


Asunto(s)
Acuaporinas , Priones , Amiloide/química , Animales , Cricetinae , Microscopía por Crioelectrón , Péptidos , Proteínas Priónicas , Priones/química
11.
J Cell Biol ; 221(6)2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35446349

RESUMEN

Subcellular localization of the deubiquitinating enzyme BAP1 is deterministic for its tumor suppressor activity. While the monoubiquitination of BAP1 by an atypical E2/E3-conjugated enzyme UBE2O and BAP1 auto-deubiquitination are known to regulate its nuclear localization, the molecular mechanism by which BAP1 is imported into the nucleus has remained elusive. Here, we demonstrated that transportin-1 (TNPO1, also known as Karyopherin ß2 or Kapß2) targets an atypical C-terminal proline-tyrosine nuclear localization signal (PY-NLS) motif of BAP1 and serves as the primary nuclear transporter of BAP1 to achieve its nuclear import. TNPO1 binding dissociates dimeric BAP1 and sequesters the monoubiquitination sites flanking the PY-NLS of BAP1 to counteract the function of UBE2O that retains BAP1 in the cytosol. Our findings shed light on how TNPO1 regulates the nuclear import, self-association, and monoubiquitination of BAP1 pertinent to oncogenesis.


Asunto(s)
Transporte Activo de Núcleo Celular , Señales de Localización Nuclear , Proteínas Supresoras de Tumor , Ubiquitina Tiolesterasa , beta Carioferinas , Núcleo Celular/metabolismo , Humanos , Señales de Localización Nuclear/metabolismo , Prolina/metabolismo , Tirosina/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , beta Carioferinas/metabolismo
12.
Protein Sci ; 31(5): e4304, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35481643

RESUMEN

Escherichia coli glutamine synthetase (EcGS) spontaneously forms a dodecamer that catalytically converts glutamate to glutamine. EcGS stacks with other dodecamers to create a filament-like polymer visible under transmission electron microscopy. Filamentous EcGS is induced by environmental metal ions. We used cryo-electron microscopy (cryo-EM) to decipher the structure of metal ion (nickel)-induced EcGS helical filament at a sub-3Å resolution. EcGS filament formation involves stacking of native dodecamers by chelating nickel ions to residues His5 and His13 in the first N-terminal helix (H1). His5 and His13 from paired parallel H1 helices provide salt bridges and hydrogen bonds to tightly stack two dodecamers. One subunit of the EcGS filament hosts two nickel ions, whereas the dodecameric interface and the ATP/Mg-binding site both host a nickel ion each. We reveal that upon adding glutamate or ATP for catalytic reactions, nickel-induced EcGS filament reverts to individual dodecamers. Such tunable filament formation is often associated with stress responses. Our results provide detailed structural information on the mechanism underlying reversible and tunable EcGS filament formation.


Asunto(s)
Escherichia coli , Glutamato-Amoníaco Ligasa , Adenosina Trifosfato , Microscopía por Crioelectrón , Glutamato-Amoníaco Ligasa/química , Glutamatos , Sustancias Macromoleculares , Metales , Níquel
13.
Nat Commun ; 12(1): 6809, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815418

RESUMEN

The mechanisms that underlie the extensive phenotypic diversity in genetic disorders are poorly understood. Here, we develop a large-scale assay to characterize the functional valence (gain or loss-of-function) of missense variants identified in UBE3A, the gene whose loss-of-function causes the neurodevelopmental disorder Angelman syndrome. We identify numerous gain-of-function variants including a hyperactivating Q588E mutation that strikingly increases UBE3A activity above wild-type UBE3A levels. Mice carrying the Q588E mutation exhibit aberrant early-life motor and communication deficits, and individuals possessing hyperactivating UBE3A variants exhibit affected phenotypes that are distinguishable from Angelman syndrome. Additional structure-function analysis reveals that Q588 forms a regulatory site in UBE3A that is conserved among HECT domain ubiquitin ligases and perturbed in various neurodevelopmental disorders. Together, our study indicates that excessive UBE3A activity increases the risk for neurodevelopmental pathology and suggests that functional variant analysis can help delineate mechanistic subtypes in monogenic disorders.


Asunto(s)
Síndrome de Angelman/genética , Trastornos del Neurodesarrollo/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Modelos Animales de Enfermedad , Pruebas de Enzimas , Mutación con Ganancia de Función , Células HEK293 , Humanos , Mutación con Pérdida de Función , Ratones , Ratones Transgénicos , Mutación Missense , Fenotipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Relación Estructura-Actividad , Ubiquitina-Proteína Ligasas/metabolismo
14.
ACS Cent Sci ; 7(5): 792-802, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34075346

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global threat to human health. Using a multidisciplinary approach, we identified and validated the hepatitis C virus (HCV) protease inhibitor simeprevir as an especially promising repurposable drug for treating COVID-19. Simeprevir potently reduces SARS-CoV-2 viral load by multiple orders of magnitude and synergizes with remdesivir in vitro. Mechanistically, we showed that simeprevir not only inhibits the main protease (Mpro) and unexpectedly the RNA-dependent RNA polymerase (RdRp) but also modulates host immune responses. Our results thus reveal the possible anti-SARS-CoV-2 mechanism of simeprevir and highlight the translational potential of optimizing simeprevir as a therapeutic agent for managing COVID-19 and future outbreaks of CoV.

15.
Biochemistry ; 60(14): 1075-1079, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33719392

RESUMEN

Cryo-electron microscopy (cryo-EM)-based structure determination of small proteins is hindered by the technical challenges associated with low signal-to-noise ratios of their particle images in intrinsically noisy micrographs. One solution is to attach the target protein to a large protein scaffold to increase its apparent size and, therefore, image contrast. Here we report a novel scaffold design based on a trimeric helical protein, E. coli ornithine transcarbamylase (OTC), fused to human ubiquitin. As a proof of principle, we demonstrated the ability to resolve a cryo-EM map of a 26 kDa human ubiquitin C-terminal hydrolase (UCHL1) attached to the C-terminus of ubiquitin as part of the trimeric assembly. The results revealed conformational changes in UCHL1 upon binding to ubiquitin, namely, a significant displacement of α-helix 2, which was also observed by X-ray crystallography. Our findings demonstrated the potential of the trimeric OTC scaffold design for studying a large number of ubiquitin interacting proteins by cryo-EM.


Asunto(s)
Microscopía por Crioelectrón , Ornitina Carbamoiltransferasa/química , Algoritmos , Cristalografía por Rayos X , Escherichia coli/enzimología , Humanos , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes de Fusión/química
16.
Nat Commun ; 12(1): 1322, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637724

RESUMEN

The ubiquitin-proteasome system (UPS) and autophagy are two major quality control processes whose impairment is linked to a wide variety of diseases. The coordination between UPS and autophagy remains incompletely understood. Here, we show that ubiquitin ligase UBE3C and deubiquitinating enzyme TRABID reciprocally regulate K29/K48-branched ubiquitination of VPS34. We find that this ubiquitination enhances the binding of VPS34 to proteasomes for degradation, thereby suppressing autophagosome formation and maturation. Under ER and proteotoxic stresses, UBE3C recruitment to phagophores is compromised with a concomitant increase of its association with proteasomes. This switch attenuates the action of UBE3C on VPS34, thereby elevating autophagy activity to facilitate proteostasis, ER quality control and cell survival. Specifically in the liver, we show that TRABID-mediated VPS34 stabilization is critical for lipid metabolism and is downregulated during the pathogenesis of steatosis. This study identifies a ubiquitination type on VPS34 and elucidates its cellular fate and physiological functions in proteostasis and liver metabolism.


Asunto(s)
Autofagia/fisiología , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Hígado/metabolismo , Proteostasis/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinación/fisiología , Animales , Autofagosomas/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Dieta Alta en Grasa/efectos adversos , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones Endogámicos C57BL , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/genética
17.
Molecules ; 25(21)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182242

RESUMEN

Ubiquitination is a versatile posttranslational modification that elicits signaling roles to impact on various cellular processes and disease states. The versatility is a result of the complexity of ubiquitin conjugates, ranging from a single ubiquitin monomer to polymers with different length and linkage types. Recent studies have revealed the abundant existence of branched ubiquitin chains in which one ubiquitin molecule is connected to two or more ubiquitin moieties in the same ubiquitin polymer. Compared to the homotypic ubiquitin chain, the branched chain is recognized or processed differently by readers and erasers of the ubiquitin system, respectively, resulting in a qualitative or quantitative alteration of the functional output. Furthermore, certain types of branched ubiquitination are induced by cellular stresses, implicating their important physiological role in stress adaption. In addition, the current chemical methodologies of solid phase peptide synthesis and expanding genetic code approach have been developed to synthesize different architectures of branched ubiquitin chains. The synthesized branched ubiquitin chains have shown their significance in understanding the topologies and binding partners of the branched chains. Here, we discuss the recent progresses on the detection, functional characterization and synthesis of branched ubiquitin chains as well as the future perspectives of this emerging field.


Asunto(s)
Polímeros/química , Ubiquitina/química , Ubiquitinación , Animales , Humanos , Espectrometría de Masas , Péptidos/química , Fosforilación , Complejo de la Endopetidasa Proteasomal/química , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Transducción de Señal
18.
Front Mol Biosci ; 7: 174, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850963

RESUMEN

Covid-19 is caused by a novel form of coronavirus for which there are currently no vaccines or anti-viral drugs. This virus, termed SARS-CoV-2 (CoV2), contains Papain-like protease (PLpro) involved in viral replication and immune response evasion. Drugs targeting this protease therefore have great potential for inhibiting the virus, and have proven successful in older coronaviruses. Here, we introduce two effective inhibitors of SARS-CoV-1 (CoV1) and MERS-CoV to assess their potential for inhibiting CoV2 PLpro. We ran 1 µs molecular dynamics (MD) simulations of CoV2, CoV1, and MERS-CoV ligand-free PLpro to characterize the dynamics of CoV2 PLpro, and made comparisons between the three to elucidate important similarities and differences relevant to drug design and ubiquitin-like protein binding for deubiquitinating and deISGylating activity of CoV2. Next, we simulated the inhibitors bound to CoV1 and CoV2 PLpro in various poses and at different known binding sites to analyze their binding modes. We found that the naphthalene-based ligand shows strong potential as an inhibitor of CoV2 PLpro by binding at the putative naphthalene inhibitor binding site in both computational predictions and experimental assays. Our modeling work suggested strategies to improve naphthalene-based compounds, and our results from molecular docking showed that the newly designed compounds exhibited improved binding affinity. The other ligand, chemotherapy drug 6-mercaptopurine (6MP), showed little to no stable intermolecular interaction with PLpro and quickly dissociated or remained highly mobile. We demonstrate multiple ways to improve the binding affinity of the naphthalene-based inhibitor scaffold by engaging new residues in the unused space of the binding site. Analysis of CoV2 PLpro also brings insights into recognition of ubiquitin-like proteins that may alter innate immune response.

19.
Proc Natl Acad Sci U S A ; 117(3): 1438-1446, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31900356

RESUMEN

Feline infectious peritonitis virus (FIPV) is an alphacoronavirus that causes a nearly 100% mortality rate without effective treatment. Here we report a 3.3-Å cryoelectron microscopy (cryo-EM) structure of the serotype I FIPV spike (S) protein, which is responsible for host recognition and viral entry. Mass spectrometry provided site-specific compositions of densely distributed high-mannose and complex-type N-glycans that account for 1/4 of the total molecular mass; most of the N-glycans could be visualized by cryo-EM. Specifically, the N-glycans that wedge between 2 galectin-like domains within the S1 subunit of FIPV S protein result in a unique propeller-like conformation, underscoring the importance of glycosylation in maintaining protein structures. The cleavage site within the S2 subunit responsible for activation also showed distinct structural features and glycosylation. These structural insights provide a blueprint for a better molecular understanding of the pathogenesis of FIP.


Asunto(s)
Coronavirus Felino/química , Glicoproteína de la Espiga del Coronavirus/química , Microscopía por Crioelectrón , Galectinas/química , Glicosilación , Células HEK293 , Humanos , Manosa/química , Conformación Proteica
20.
Protein Sci ; 26(8): 1674-1680, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28470758

RESUMEN

Members of the LC3/GABARAP family of ubiquitin-like proteins function during autophagy by serving as membrane linked protein-binding platforms. Their C-termini are physically attached to membranes through covalent linkage to primary amines on lipids such as phosphatidylethanolamine, while their ubiquitin-like fold domains bind "LIR" (LC3-Interacting Region) sequences found within an extraordinarily diverse array of proteins including regulators of autophagy, adaptors that recruit ubiquitinated cargoes to be degraded, and even proteins controlling processes at membranes that are not associated with autophagy. Recently, LC3/GABARAP proteins were found to bind the ubiquitin E3 ligase NEDD4 to influence ubiquitination associated with autophagy in human cell lines. Here, we use purified recombinant proteins to define LC3B interactions with a specific LIR sequence from NEDD4, present a crystal structure showing atomic details of the interaction, and show that LC3B-binding can steer intrinsic NEDD4 E3 ligase activity. The data provide detailed molecular insights underlying recruitment of an E3 ubiquitin ligase to phagophores during autophagy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Proteínas Asociadas a Microtúbulos/química , Ubiquitina-Proteína Ligasas/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Autofagia/genética , Sitios de Unión , Línea Celular , Clonación Molecular , Cristalografía por Rayos X , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Ubiquitina-Proteína Ligasas Nedd4 , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Transactivadores , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...