Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 626, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245526

RESUMEN

Optoelectronic properties of semiconductors are significantly modified by impurities at trace level. Oxygen, a prevalent impurity in organic semiconductors (OSCs), has long been considered charge-carrier traps, leading to mobility degradation and stability problems. However, this understanding relies on the conventional deoxygenation methods, by which oxygen residues in OSCs are inevitable. It implies that the current understanding is questionable. Here, we develop a non-destructive deoxygenation method (i.e., de-doping) for OSCs by a soft plasma treatment, and thus reveal that trace oxygen significantly pre-empties the donor-like traps in OSCs, which is the origin of p-type characteristics exhibited by the majority of these materials. This insight is completely opposite to the previously reported carrier trapping and can clarify some previously unexplained organic electronics phenomena. Furthermore, the de-doping results in the disappearance of p-type behaviors and significant increase of n-type properties, while re-doping (under light irradiation in O2) can controllably reverse the process. Benefiting from this, the key electronic characteristics (e.g., polarity, conductivity, threshold voltage, and mobility) can be precisely modulated in a nondestructive way, expanding the explorable property space for all known OSC materials.

3.
Small ; 17(5): e2006181, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33432780

RESUMEN

To address the lack of a suitable electrolyte that supports the stable operation of the electrochemical yarn muscles in air, an ionic-liquid-in-nanofibers sheathed carbon nanotube (CNT) yarn muscle is prepared. The nanofibers serve as a separator to avoid the short-circuiting of the yarns and a reservoir for ionic liquid. The ionic-liquid-in-nanofiber-sheathed yarn muscles are strong, providing an isometric stress of 10.8 MPa (about 31 times the skeletal muscles). The yarn muscles are highly robust, which can reversibly contract stably at such conditions as being knotted, wide-range humidity (30 to 90 RH%) and temperature (25 to 70 °C), and long-term cycling and storage in air. By utilizing the accumulated isometric stress, the yarn muscles achieve a high contraction rate of 36.3% s-1 . The yarn muscles are tightly bundled to lift heavy weights and grasp objects. These unique features can make the strong and robust yarn muscles as a desirable actuation component for robotic devices.


Asunto(s)
Líquidos Iónicos , Nanofibras , Nanotubos de Carbono , Electrólitos , Músculo Esquelético
4.
RSC Adv ; 11(12): 6628-6643, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35423204

RESUMEN

Aligned carbon nanotube (CNT) fibers have been considered as one of the ideal candidate electrodes for fiber-shaped energy harvesting and storage devices, due to their merits of flexibility, lightweight, desirable mechanical property, outstanding electrical conductivity as well as high specific surface area. Herein, the recent advancements on the aligned CNT fibers for energy harvesting and storage devices are reviewed. The synthesis, structure, and properties of aligned carbon nanotube fibers are briefly summarized. Then, their applications in fiber-shaped energy harvesting and storage devices (i.e., solar cells, supercapacitors, and batteries) are demonstrated. The remaining challenges are finally discussed to highlight the future research direction in the development of aligned CNT fibers for fiber-shaped energy devices.

5.
RSC Adv ; 10(32): 18715-18720, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35518311

RESUMEN

High alignment and densification of carbon nanotubes (CNTs) are of key importance for strengthening CNT fibers, whereas direct stretching has a very limited effect when CNTs are highly entangled. We report that by lubricating CNT surfaces with viscous alcohols, the relative motion between CNTs improves because of the reduced sliding energy barrier; thus non-stretched regions are effectively eliminated. Owing to the very efficient optimization of the assembled structure, the stretched CNT fibers exhibited an average tensile strength of 2.33 GPa (1.82 N per tex) and modulus of 70.1 GPa (54.8 N per tex). Other fundamental properties, such as electrical and thermal conductivities, were also remarkably improved. Such a strategy can be readily used for manufacturing high-performance CNT assemblies and composites.

6.
Adv Mater ; 31(9): e1800750, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30062782

RESUMEN

High-purity semiconducting single-walled carbon nanotubes (s-SWCNTs) are of paramount significance for the construction of next-generation electronics. Until now, a number of elaborate sorting and purification techniques for s-SWCNTs have been developed, among which solution-based sorting methods show unique merits in the scale production, high purity, and large-area film formation. Here, the recent progress in the solution processing of s-SWCNTs and their application in electronic devices is systematically reviewed. First, the solution-based sorting and purification of s-SWCNTs are described, and particular attention is paid to the recent advance in the conjugated polymer-based sorting strategy. Subsequently, the solution-based deposition and morphology control of a s-SWCNT thin film on a surface are introduced, which focus on the strategies for network formation and alignment of SWCNTs. Then, the recent advances in electronic devices based on s-SWCNTs are reviewed with emphasis on nanoscale s-SWCNTs' high-performance integrated circuits and s-SWCNT-based thin-film transistors (TFT) array and circuits. Lastly, the existing challenges and development trends for the s-SWCNTs and electronic devices are briefly discussed. The aim is to provide some useful information and inspiration for the sorting and purification of s-SWCNTs, as well as the construction of electronic devices with s-SWCNTs.

7.
Adv Mater ; 31(6): e1805630, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30548675

RESUMEN

The piezoresistive pressure sensor, a kind of widely investigated artificial device to transfer force stimuli to electrical signals, generally consists of one or more kinds of conducting materials. Here, a highly sensitive pressure sensor based on the semiconductor/conductor interface piezoresistive effect is successfully demonstrated by using organic transistor geometry. Because of the efficient combination of the piezoresistive effect and field-effect modulation in a single sensor, this pressure sensor shows excellent performance, such as high sensitivity (514 kPa-1 ), low limit of detection, short response and recovery time, and robust stability. More importantly, the unique gate modulation effect in the transistor endows the sensor with an unparalleled ability-tunable sensitivity via bias conditions in a single sensor, which is of great significance for applications in complex pressure environments. The novel working principle and high performance represent significant progress in the field of pressure sensors.

8.
ACS Appl Mater Interfaces ; 10(24): 20826-20834, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29847907

RESUMEN

High-sensitivity pressure sensors are crucial for the ultrasensitive touch technology and E-skin, especially at the tiny-pressure range below 100 Pa. However, it is highly challenging to substantially promote sensitivity beyond the current level at several to 200 kPa-1 and to improve the detection limit lower than 0.1 Pa, which is significant for the development of pressure sensors toward ultrasensitive and highly precise detection. Here, we develop an efficient strategy to greatly improve the sensitivity near to 2000 kPa-1 using short-channel coplanar device structure and sharp microstructure, which is systematically proposed for the first time and rationalized by the mathematic calculation and analysis. Significantly, benefiting from the ultrahigh sensitivity, the detection limit is improved to be as small as 0.075 Pa. The sensitivity and detection limit are both superior to the current levels and far surpass the function of human skin. Furthermore, the sensor shows fast response time (50 µs), excellent reproducibility and stability, and low power consumption. Remarkably, the sensor shows excellent detection capacity in the tiny-pressure range, including light-emitting diode switching with a pressure of 7 Pa, ringtone (2-20 Pa) recognition, and ultrasensitive (0.1 Pa) electronic glove. This work represents a performance and strategic progress in the field of pressure sensing.

9.
Polymers (Basel) ; 10(6)2018 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-30966620

RESUMEN

To realize the practical applications of flexible pressure sensors, the high performance (sensitivity and response time) as well as more functionalities are highly desired. In this work, we fabricated a piezoresistive pressure sensor based on the micro-structured composites films of multi-walled carbon nanotubes (MWCNTs) and poly (dimethylsiloxane) (PDMS). In addition, we establish efficient strategies to improve key performance of our pressure sensor. Its sensitivity is improved up to 474.13 kPa-1 by minimizing pressure independent resistance of sensor, and response time is shorten as small as 2 µs by enhancing the elastic modulus of polymer elastomer. Benefiting from the high performance, the functionalities of sensors are successfully extended to the accurate detection of high frequency mechanical vibration (~300 Hz) and large range of air pressure (6⁻101 kPa), both of which are not achieved before.

10.
ACS Appl Mater Interfaces ; 9(16): 14292-14300, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28375600

RESUMEN

Electrical hysteresis in carbon nanotube thin-film transistor (CNTTFT) due to surface adsorption of H2O/O2 is a severe obstacle for practical applications. The conventional encapsulation methods based on vacuum-deposited inorganic materials or wet-coated organic materials have some limitations. In this work, we develop a general and highly efficient dry-laminating encapsulation method to reduce the hysteresis of CNTTFTs, which may simultaneously realize the construction and encapsulation of CNTTFT. Furthermore, by virtue of dry procedure and wide compatibility of PMMA, this method is suitable for the construction of CNTTFT on diverse surface including both inorganic and organic dielectric materials. Significantly, the dry-encapsulated CNTTFT exhibits very low or even negligible hysteresis with good repeatability and air stability, which is greatly superior to the nonencapsulated and wet-encapsulated CNTTFT with spin-coated PMMA. The dry-laminating encapsulation strategy, a kind of technological innovation, resolves a significant problem of CNTTFT and therefore will be promising in facile transferring and packaging the CNT films for high-performance optoelectronic devices.

11.
Langmuir ; 32(37): 9492-500, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27557089

RESUMEN

The modification of dielectric surface with a self-assembled monolayer (SAM) such as octadecyltrichlorosilane (OTS) is a widely used method to tune the electrical property of diverse electronic devices based on organic semiconductors, graphene, transition metal dichalcogenides (TMDs), and so forth. The surface roughness of self-assembled OTS monolayer is a key factor in determining its effect on device performance, but the preparation of an ultrasmooth OTS monolayer is a technologically challenging task. In this work, an ultrasmooth OTS monolayer is prepared via a facile peeling method, which may serve as a postremedy strategy to remove the protuberant aggregates. Such a method has not been reported before. With organic semiconductors as a testing model, ultrasmooth OTS may significantly improve the charge mobility of organic field-effect transistors (OFETs). P-type dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) OFET with an ultrasmooth OTS monolayer yields good reproducibility and unprecendented maximum mobility of 8.16 cm(2) V(-1) s(-1), which is remarkably superior to that of the OFET with a pristine OTS monolayer. This work develops a simple method to resolve the common and significant problem of the quality of OTS modification, which would be highly promising for electronic applications as well as other fields such as surface and interface engineering.

12.
Langmuir ; 32(25): 6246-54, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27267545

RESUMEN

Ultrathin film with thickness below 15 nm of organic semiconductors provides excellent platform for some fundamental research and practical applications in the field of organic electronics. However, it is quite challenging to develop a general principle for the growth of uniform and continuous ultrathin film over large area. Dip-coating is a useful technique to prepare diverse structures of organic semiconductors, but the assembly of organic semiconductors in dip-coating is quite complicated, and there are no reports about the core rules for the growth of ultrathin film via dip-coating until now. In this work, we develop a general strategy for the growth of ultrathin film of organic semiconductor via dip-coating, which provides a relatively facile model to analyze the growth behavior. The balance between the three direct factors (nucleation rate, assembly rate, and recession rate) is the key to determine the growth of ultrathin film. Under the direction of this rule, ultrathin films of four organic semiconductors are obtained. The field-effect transistors constructed on the ultrathin film show good field-effect property. This work provides a general principle and systematic guideline to prepare ultrathin film of organic semiconductors via dip-coating, which would be highly meaningful for organic electronics as well as for the assembly of other materials via solution processes.

13.
Phys Chem Chem Phys ; 18(19): 13209-15, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27062997

RESUMEN

Electrode materials and geometry play a crucial role in the charge injection efficiency in organic transistors. Reduced graphene oxide (RGO) electrodes show good compatibility with an organic semiconductor from the standpoint of energy levels and ordered growth of the organic semiconductor, both of which are favourable for charge injection. However, the wide electrode edge (>10 nm) in commonly-used RGO electrodes is generally detrimental to charge injection. In this study, ultrathin (about 3 nm) RGO electrodes are fabricated via a covalency-based assembly strategy, which has advantages such as robustness against solvents, high conductivity, transparency, and easy scaling-up. More remarkably, the ultrathin electrode fabricated in this study has a narrow edge, which may facilitate the diffusion and assembly of organic semiconductors and thus form a uniform semiconductor film across the electrode/channel junction area. As a result, the minimized electrode edge may significantly improve the charge injection in organic transistors compared with thick electrodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...