Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 45(6): 753-768.e8, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29920279

RESUMEN

Disruptive mutations in chromatin remodeler CHD8 cause autism spectrum disorders, exhibiting widespread white matter abnormalities; however, the underlying mechanisms remain elusive. We show that cell-type specific Chd8 deletion in oligodendrocyte progenitors, but not in neurons, results in myelination defects, revealing a cell-intrinsic dependence on CHD8 for oligodendrocyte lineage development, myelination and post-injury remyelination. CHD8 activates expression of BRG1-associated SWI/SNF complexes that in turn activate CHD7, thus initiating a successive chromatin remodeling cascade that orchestrates oligodendrocyte lineage progression. Genomic occupancy analyses reveal that CHD8 establishes an accessible chromatin landscape, and recruits MLL/KMT2 histone methyltransferase complexes distinctively around proximal promoters to promote oligodendrocyte differentiation. Inhibition of histone demethylase activity partially rescues myelination defects of CHD8-deficient mutants. Our data indicate that CHD8 exhibits a dual function through inducing a cascade of chromatin reprogramming and recruiting H3K4 histone methyltransferases to establish oligodendrocyte identity, suggesting potential strategies of therapeutic intervention for CHD8-associated white matter defects.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Fibras Nerviosas Mielínicas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Diferenciación Celular/fisiología , Cromatina/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Histona Metiltransferasas , Ratones , Ratones Noqueados , Vaina de Mielina/metabolismo , Vaina de Mielina/fisiología , Oligodendroglía/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/metabolismo
2.
J Neurosci ; 38(6): 1575-1587, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29326173

RESUMEN

Bergmann glia facilitate granule neuron migration during development and maintain the cerebellar organization and functional integrity. At present, molecular control of Bergmann glia specification from cerebellar radial glia is not fully understood. In this report, we show that ZEB2 (aka, SIP1 or ZFHX1B), a Mowat-Wilson syndrome-associated transcriptional regulator, is highly expressed in Bergmann glia, but hardly detectable in astrocytes in the cerebellum. The mice lacking Zeb2 in cerebellar radial glia exhibit severe deficits in Bergmann glia specification, and develop cerebellar cortical lamination dysgenesis and locomotion defects. In developing Zeb2-mutant cerebella, inward migration of granule neuron progenitors is compromised, the proliferation of glial precursors is reduced, and radial glia fail to differentiate into Bergmann glia in the Purkinje cell layer. In contrast, Zeb2 ablation in granule neuron precursors or oligodendrocyte progenitors does not affect Bergmann glia formation, despite myelination deficits caused by Zeb2 mutation in the oligodendrocyte lineage. Transcriptome profiling identified that ZEB2 regulates a set of Bergmann glia-related genes and FGF, NOTCH, and TGFß/BMP signaling pathway components. Our data reveal that ZEB2 acts as an integral regulator of Bergmann glia formation ensuring maintenance of cerebellar integrity, suggesting that ZEB2 dysfunction in Bergmann gliogenesis might contribute to motor deficits in Mowat-Wilson syndrome.SIGNIFICANCE STATEMENT Bergmann glia are essential for proper cerebellar organization and functional circuitry, however, the molecular mechanisms that control the specification of Bergmann glia remain elusive. Here, we show that transcriptional factor ZEB2 is highly expressed in mature Bergmann glia, but not in cerebellar astrocytes. The mice lacking Zeb2 in cerebellar radial glia, but not oligodendrocyte progenitors or granular neuron progenitors, exhibit severe defects in Bergmann glia formation. The orderly radial scaffolding formed by Bergmann glial fibers critical for cerebellar lamination was not established in Zeb2 mutants, displaying motor behavior deficits. This finding demonstrates a previously unrecognized critical role for ZEB2 in Bergmann glia specification, and points to an important contribution of ZEB2 dysfunction to cerebellar motor disorders in Mowat-Wilson syndrome.


Asunto(s)
Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Neurogénesis/genética , Neurogénesis/fisiología , Neuroglía/fisiología , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/fisiología , Animales , Astrocitos/fisiología , Recuento de Células , Cerebelo/fisiología , Facies , Perfilación de la Expresión Génica , Enfermedad de Hirschsprung/genética , Discapacidad Intelectual/genética , Locomoción/fisiología , Ratones , Ratones Transgénicos , Microcefalia/genética , Células-Madre Neurales/fisiología , Oligodendroglía/fisiología , Células de Purkinje/fisiología , Transcriptoma/fisiología
3.
Nat Commun ; 7: 10883, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26955760

RESUMEN

Constitutive activation of Wnt/ß-catenin inhibits oligodendrocyte myelination. Tcf7l2/Tcf4, a ß-catenin transcriptional partner, is required for oligodendrocyte differentiation. How Tcf7l2 modifies ß-catenin signalling and controls myelination remains elusive. Here we define a stage-specific Tcf7l2-regulated transcriptional circuitry in initiating and sustaining oligodendrocyte differentiation. Multistage genome occupancy analyses reveal that Tcf7l2 serially cooperates with distinct co-regulators to control oligodendrocyte lineage progression. At the differentiation onset, Tcf7l2 interacts with a transcriptional co-repressor Kaiso/Zbtb33 to block ß-catenin signalling. During oligodendrocyte maturation, Tcf7l2 recruits and cooperates with Sox10 to promote myelination. In that context, Tcf7l2 directly activates cholesterol biosynthesis genes and cholesterol supplementation partially rescues oligodendrocyte differentiation defects in Tcf712 mutants. Together, we identify stage-specific co-regulators Kaiso and Sox10 that sequentially interact with Tcf7l2 to coordinate the switch at the transitions of differentiation initiation and maturation during oligodendrocyte development, and point to a previously unrecognized role of Tcf7l2 in control of cholesterol biosynthesis for CNS myelinogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Sistema Nervioso/crecimiento & desarrollo , Oligodendroglía/metabolismo , Factores de Transcripción SOXE/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Factores de Transcripción/metabolismo , Animales , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sistema Nervioso/metabolismo , Unión Proteica , Factores de Transcripción SOXE/genética , Transducción de Señal , Especificidad de la Especie , Proteína 2 Similar al Factor de Transcripción 7/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...