Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(5): e1012215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701108

RESUMEN

Fusarium head blight (FHB), caused by Fusarium graminearum species complexes (FGSG), is an epidemic disease in wheat and poses a serious threat to wheat production and security worldwide. Profilins are a class of actin-binding proteins that participate in actin depolymerization. However, the roles of profilins in plant fungal pathogens remain largely unexplored. Here, we identified FgPfn, a homolog to profilins in F. graminearum, and the deletion of FgPfn resulted in severe defects in mycelial growth, conidia production, and pathogenicity, accompanied by marked disruptions in toxisomes formation and deoxynivalenol (DON) transport, while sexual development was aborted. Additionally, FgPfn interacted with Fgα1 and Fgß2, the significant components of microtubules. The organization of microtubules in the ΔFgPfn was strongly inhibited under the treatment of 0.4 µg/mL carbendazim, a well-known group of tubulin interferers, resulting in increased sensitivity to carbendazim. Moreover, FgPfn interacted with both myosin-5 (FgMyo5) and actin (FgAct), the targets of the fungicide phenamacril, and these interactions were reduced after phenamacril treatment. The deletion of FgPfn disrupted the normal organization of FgMyo5 and FgAct cytoskeleton, weakened the interaction between FgMyo5 and FgAct, and resulting in increased sensitivity to phenamacril. The core region of the interaction between FgPfn and FgAct was investigated, revealing that the integrity of both proteins was necessary for their interaction. Furthermore, mutations in R72, R77, R86, G91, I101, A112, G113, and D124 caused the non-interaction between FgPfn and FgAct. The R86K, I101E, and D124E mutants in FgPfn resulted in severe defects in actin organization, development, and pathogenicity. Taken together, this study revealed the role of FgPfn-dependent cytoskeleton in development, DON production and transport, fungicides sensitivity in F. graminearum.


Asunto(s)
Actinas , Proteínas Fúngicas , Fungicidas Industriales , Fusarium , Microtúbulos , Enfermedades de las Plantas , Triticum , Microtúbulos/metabolismo , Fusarium/metabolismo , Fusarium/patogenicidad , Fusarium/genética , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Actinas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Triticum/microbiología , Fungicidas Industriales/farmacología , Esporas Fúngicas/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Reproducción
2.
Pestic Biochem Physiol ; 188: 105253, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464359

RESUMEN

Fusarium graminearum is an important plant pathogen and the causal agent of Fusarium head blight (FHB). At present, the principal method of controlling FHB is through fungicides. Fluazinam is an agent with strong broad-spectrum antifungal activity and has been used to control many diseases. However, there are no reported uses of fluazinam for controlling FHB. This study reports the activity and cell toxicology mechanisms of fluazinam on the filamentous fungus F. graminearum and its effect on fungal growth and development. The activity of fluazinam was tested for 95 wild-type field strains of F. graminearum. The EC50 values (the 50% effective concentration) of fluazinam for inhibition of mycelial growth and spore germination ranged from 0.037 µg/ml to 0.179 µg/ml and from 0.039 µg/ml to 0.506 µg/ml, respectively. The fluazinam sensitivity of these strains varied in 4.9 and 13.0 folds, implying that the target of the fungicide remained unchanged. After treatment with 0.3 µg/ml (≈EC90) fluazinam, the production of conidia was reduced, and the cell wall and cell membrane had shrunked; the cell nucleus and septum morphology, cell membrane permeability, and sexual development were not affected. When treated with 0.1 µg/ml (≈EC50) or 0.3 µg/ml fluazinam, the mycelial respiration and deoxynivalenol (DON) synthesis of F. graminearum were decreased. Confocal images showed that the formation of toxisomes was disturbed after fluazinam treatment, suggesting that fluazinam reduces DON synthesis by inhibiting toxisome formation. Infection of wheat coleoptiles revealed that fluazinam had a strong protective activity against F. graminearum. At 250 µg/ml fluazinam the control efficacy of protective treatments reached 100% and controlled strains resistant to carbendazim. These results contribute to the understanding of the mode of action of fluazinam and its application.


Asunto(s)
Fungicidas Industriales , Fusarium , Aminopiridinas , Fungicidas Industriales/toxicidad
3.
Phytopathology ; 112(2): 290-298, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34156266

RESUMEN

In agriculture, Trehalase is considered the main target of the biological fungicide validamycin A, and the toxicology mechanism of validamycin A is unknown. 14-3-3 proteins, highly conserved proteins, participate in diverse cellular processes, including enzyme activation, protein localization, and acting as a molecular chaperone. In Saccharomyces cerevisiae, the 14-3-3 protein Bmh1could interact with Nth1 to respond to specific external stimuli. Here, we characterized FgNth, FgBmh1, and FgBmh2 in Fusarium graminearum. ΔFgNth, ΔFgBmh1, and ΔFgBmh2 displayed great growth defects and their peripheral tips hyphae generated more branches when compared with wild-type (WT) PH-1. When exposed to validamycin A as well as high osmotic and high temperature stresses, ΔFgNth, ΔFgBmh1, and ΔFgBmh2 showed more tolerance than WT. Both ΔFgNth and ΔFgBmh1 displayed reduced deoxynivalenol production but opposite for ΔFgBmh2, and all three deletion mutants showed reduced virulence on wheat coleoptiles. In addition, coimmunoprecipitation (Co-IP) experiments suggested that FgBmh1 and FgBmh2 both interact with FgNth, but no interaction was detected between FgBmh1 and FgBmh2 in our experiments. Further, validamycin A enhances the interaction between FgBmh1 and FgNth in a positive correlation under concentrations of 1 to 100 µg/ml. In addition, both high osmotic and high temperature stresses promote the interaction between FgBmh1 and FgNth. Co-IP assay also showed that neither FgBmh1 nor FgBmh2 could interact with FgPbs2, a MAPKK kinase in the high-osmolarity glycerol pathway. However, FgBmh2 but not FgBmh1 binds to the heat shock protein FgHsp70 in F. graminearum. Taken together, our results demonstrate that FgNth and FgBmh proteins are involved in growth and responses to external stresses and virulence; and validamycin enhanced the interaction between FgNth and FgBmh1in F. graminearum.


Asunto(s)
Proteínas 14-3-3 , Fusarium , Proteínas 14-3-3/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Inositol/análogos & derivados , Enfermedades de las Plantas , Trehalasa/genética , Trehalasa/metabolismo
4.
Mol Plant Pathol ; 23(4): 489-502, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34921490

RESUMEN

Fusarium graminearum, as the causal agent of Fusarium head blight (FHB), not only causes yield loss, but also contaminates the quality of wheat by producing mycotoxins, such as deoxynivalenol (DON). The plasma membrane H+ -ATPases play important roles in many growth stages in plants and yeasts, but their functions and regulation in phytopathogenic fungi remain largely unknown. Here we characterized two plasma membrane H+ -ATPases: FgPMA1 and FgPMA2 in F. graminearum. The FgPMA1 deletion mutant (∆FgPMA1), but not FgPMA2 deletion mutant (∆FgPMA2), was impaired in vegetative growth, pathogenicity, and sexual and asexual development. FgPMA1 was localized to the plasma membrane, and ∆FgPMA1 displayed reduced integrity of plasma membrane. ∆FgPMA1 not only impaired the formation of the toxisome, which is a compartment where DON is produced, but also suppressed the expression level of DON biosynthetic enzymes, decreased DON production, and decreased the amount of mycelial invasion, leading to impaired pathogenicity by exclusively developing disease on inoculation sites of wheat ears and coleoptiles. ∆FgPMA1 exhibited decreased sensitivity to some osmotic stresses, a cell wall-damaging agent (Congo red), a cell membrane-damaging agent (sodium dodecyl sulphate), and heat shock stress. FgMyo-5 is the target of phenamacril used for controlling FHB. We found FgPMA1 interacted with FgMyo-5, and ∆FgPMA1 showed an increased expression level of FgMyo-5, resulting in increased sensitivity to phenamacril, but not to other fungicides. Furthermore, co-immunoprecipitation confirmed that FgPMA1, FgMyo-5, and FgBmh2 (a 14-3-3 protein) form a complex to regulate the sensitivity to phenamacril and biological functions. Collectively, this study identified a novel regulating mechanism of FgPMA1 in pathogenicity and phenamacril sensitivity of F. graminearum.


Asunto(s)
Fusarium , Adenosina Trifosfatasas/metabolismo , Membrana Celular , Cianoacrilatos , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Virulencia
5.
Plant Dis ; 105(4): 889-895, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33044138

RESUMEN

Phenamacril is a cyanoacrylate fungicide that provides excellent control of Fusarium head blight (FHB) or wheat scab, which is caused predominantly by Fusarium graminearum and F. asiaticum. Previous studies revealed that codon mutations of the myosin-5 gene of Fusarium spp. conferred resistance to phenamacril in in vitro lab experiments. In this study, PCR restriction fragment length polymorphism (RFLP) was developed to detect three common mutations (A135T, GCC to ACC at codon 135; S217L, TCA to TTA at codon 217; and E420K, GAA to AAA at codon 420) in F. graminearum induced by fungicide domestication in vitro. PCR products of 841 bp (for mutation of A135T), 802 bp (for mutation of S217L), or 1,649 bp (for mutation of E420K) in the myosin-5 gene were amplified by appropriate primer pairs. Restriction enzyme KpnI, TasI, or DraI was used to distinguish phenamacril-sensitive and -resistant strains with mutation genotypes of A135T, S217L, and E420K, respectively. KpnI digested the 841-bp PCR products of phenamacril-resistant strains with codon mutation A135T into two fragments of 256 and 585 bp. In contrast, KpnI did not digest the PCR products of sensitive strains. TasI digested the 802-bp PCR products of phenamacril-resistant strains with codon mutation S217L into three fragments of 461, 287, and 54 bp. In contrast, TasI digestion of the 802-bp PCR products of phenamacril-sensitive strains resulted in only two fragments of 515 and 287 bp. DraI digested the 1,649-bp PCR products of phenamacril-resistant strains with codon mutation E420K into two fragments of 932 and 717 bp, while the PCR products of phenamacril-sensitive strains was not digested. The three genotypes of resistance mutations were determined by analyzing electrophoresis patterns of the digestion fragments of PCR products. The PCR-RFLP method was evaluated on 48 phenamacril-resistant strains induced by fungicide domestication in vitro and compared with the conventional method (mycelial growth on fungicide-amended agar). The accuracy of the PCR-RFLP method for detecting the three mutation genotypes of F. graminearum resistant to phenamacril was 95.12% compared with conventional method. Bioinformatics analysis revealed that the PCR-RFLP method could also be used to detect the codon mutations of A135T and E420K in F. asiaticum.


Asunto(s)
Fusarium , Cianoacrilatos , Fusarium/genética , Genotipo , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción
7.
Pestic Biochem Physiol ; 155: 81-89, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30857631

RESUMEN

Sclerotinia sclerotiorum is a necrotrophic and filamentous fungus with a broad host range. Fluazinam is a pyridinamine fungicide with a broad spectrum of antifungal activity and had a strong inhibition effect on mycelial growth of S. sclerotiorum populations. But the impact of fluazinam on morphological and physiological characteristics of S. sclerotiorum is little known. In this study, the EC50 values of fluazinam to three strains of S. sclerotiorum (CZ17S, YZ55S and SA42S) were 0.0084, 0.007, 0.0065 µg/ml respectively. After fluazinam treatment, hyphae of S. sclerotiorum became thinner, hyphal offshoot of top increased, the distance between one septum and another became shorter, cell membrane permeability increased markedly, exopolysaccharide (EPS) content and oxalic acid content decreased significantly, peroxidase (POD) activity increased significantly and mycelial respiration was inhibited. While the number and dry weight of sclerotia, glycerol content in the mycelia did not significantly change. In protective activity assay on detached rapeseed leaves, application of fluazinam at 40 µg/ml and 80 µg/ml, the control efficacy reached to 41.4% and 100%, respectively. In curative activity assay, application of fluazinam at 100 µg/ml, the control efficacy reached to 61.09%. In the same concentration, protective activity of fluazinam against S. sclerotiorum was higher than curative activity. These results will contribute to us on evaluating the potential of the fungicide fluazinam for management of Sclerotinia stem rot and understanding the mode of action of fluazinam against S. sclerotiorum.


Asunto(s)
Aminopiridinas/farmacología , Ascomicetos/efectos de los fármacos , Antifúngicos/farmacología , Micelio/efectos de los fármacos , Enfermedades de las Plantas/microbiología
8.
Pestic Biochem Physiol ; 152: 98-105, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30497718

RESUMEN

Fusarium fujikuroi is the primary causal agent of rice bakanae disease. Fluazinam is a protective dinitroaniline fungicide which could interrupt the fungal cell's energy production. Little is known about the effects of fluazinam on F. fujikuroi. In this study, baseline sensitivity of F. fujikuroi to fluazinam was determined using 103 isolates collected from diseased young rice of different fields in Shaoxing of Zhejiang Province and Huaian of Jiangsu Province of China in 2016. The EC50 values of fluazinam on inhibiting mycelial growth against 103 isolates of F. fujikuroi ranged from 0.0621 to 0.5446 µg/mL with the average value of 0.2038 ±â€¯0.0099 µg/mL (mean ±â€¯standard error). The EC50 values of fluazinam on suppressing conidium germination against 103 isolates of F. fujikuroi ranged from 0.1006 to 0.9763 µg/mL with the mean value of 0.3552 ±â€¯0.0181 µg/mL. Treated with fluazinam, hyphae of F. fujikuroi were contorted, offshoot of top mycelia increased, conidial production descreased significantly and exopolysaccharide (EPS) content did not change significantly while peroxidase (POD) activity significantly decreased. Meanwhile, cell membrane permeability increased after treated with fluazinam. The analysis of cell ultrastructure indicated that fluazinam could damage the membrane structure of F. fujikuroi and cause a large number of vacuoles formed. In addition, fluazinam did not affect germination rate, plant height and fresh weight of rice, which indicated that fluazinam was safe to rice. All the results indicated that fluazinam had strong antifungal activity against F. fujikuroi and a potential application in controlling rice bakanae disease. These results will provide useful information for management of rice bakanae disease caused by F. fujikuroi and further increase our understanding about the mode of action of fluazinam against F. fujikuroi and other phytopathogens.


Asunto(s)
Aminopiridinas/farmacología , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Oryza/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Polisacáridos Fúngicos/metabolismo , Fusarium/fisiología , Fusarium/ultraestructura , Micelio/efectos de los fármacos , Micelio/fisiología , Micelio/ultraestructura , Oryza/crecimiento & desarrollo , Peroxidasa/metabolismo
9.
Pestic Biochem Physiol ; 149: 81-88, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30033021

RESUMEN

Benzovindiflupyr is a novel member of succinate dehydrogenase inhibitor (SDHI) fungicides. The filamentous fungus Bipolaris maydis Nisik. et Miyake was the causal agent of southern corn leaf blight (SCLB). Here, baseline sensitivity of B. maydis to benzovindiflupyr was established by mycelial growth and conidium germination methods using 96 B. maydis isolates collected from various places of Jiangsu Province of China, and EC50 values ranged from 0.0321 to 0.9149 µg/ml with the mean value of 0.3446 (±0.2248) µg/ml for mycelial growth, and 0.1864 to 0.964 µg/ml with the mean value of 0.5060 (±0.2094) µg/ml for conidium germination respectively. Treated with benzovindiflupyr, the distribution of nuclei and septum of hyphae did not change, but hyphae of offshoot and conidial production of B. maydis decreased significantly, the cell membrane permeability increased. The result of transmission electron microscope showed that the cross section of hypha was out of shape, the cell wall became thin and sparse, the cell membrane were distinctly damaged, organelles dissolved and vacuolated, and the cell nearly broke up. The results suggested that benzovindiflupyr had strong activity against mycelial growth and conidial production of B. maydis by damaging cell wall, membrane and organelles. The protective and curative activity assays for benzovindiflupyr indicated that benzovindiflupyr exhibited excellent suppression of B. maydis development on detached corn leaves. In protective activity assay with application of benzovindiflupyr at 10 µg/ml, the control efficacy reached to 100%. In curative activity assay with application of benzovindiflupyr at 50 µg/ml, the control efficacy reached to 90.72%. This is the first report of baseline sensitivity of B. maydis to benzovindiflupyr and its biological activity against B. maydis. It is recommended that benzovindiflupyr is a excellent candidate for controlling SCLB.


Asunto(s)
Ascomicetos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Fungicidas Industriales/farmacología , Norbornanos/farmacología , Pirazoles/farmacología , Succinato Deshidrogenasa/antagonistas & inhibidores , Ascomicetos/enzimología , Ascomicetos/crecimiento & desarrollo , Ascomicetos/ultraestructura , Permeabilidad de la Membrana Celular/efectos de los fármacos , Farmacorresistencia Fúngica , Germinación/efectos de los fármacos , Hifa/efectos de los fármacos , Hifa/ultraestructura , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/microbiología , Zea mays/microbiología
10.
Pestic Biochem Physiol ; 148: 8-15, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29891381

RESUMEN

Fluazinam is a dinitroaniline fungicide with broad-spectrum activities. However, the activity of fluazinam against Bipolaris maydis which is the causal agent of southern corn leaf blight is unknown yet. In this study, baseline sensitivity of B. maydis to fluazinam was determined using 92 isolates collected during 2015 and 2016 from different geographical regions in Jiangsu Province of China, and the EC50 values ranged from 0.0396 to 0.9808 µg/ml with average value of 0.3853 ±â€¯0.2297 µg/ml, and 0.079 to 0.7832 µg/ml with average value of 0.3065 ±â€¯0.1384 µg/ml for mycelial growth and conidium germination respectively. Fluazinam did not affect the distribution of cell nucleus and the formation of septum of B. maydis. However, fluazinam could make mycelium of B. maydis contorted and the mycelial branches increased and inhibit the development of conidia. The result of transmission electron microscope showed that fluazinam damaged cell wall and cell membrane of mycelium, and make organelles in mycelial cell dissolved and vacuolated, and the cell almost broke up, which caused the intracellular plasma leakage increase. The protective activity test of fluazinam suggested that fluazinam had great control efficiency against B. maydis on detached corn leaves. Application of fluazinam at 10 µg/ml and 20 µg/ml, the control efficacy reached to 87.70% and 98.25% respectively. However, fluazinam had no curative activity against B. maydis on detached corn leaves. These results will contribute to us on evaluating the potential of the dinitroaniline fungicide fluazinam for management of diseases caused by B. maydis and understanding the mode of action of fluazinam against B. maydis.


Asunto(s)
Aminopiridinas/farmacología , Ascomicetos/efectos de los fármacos , Fungicidas Industriales/farmacología , Ascomicetos/crecimiento & desarrollo , Ascomicetos/ultraestructura , Permeabilidad de la Membrana Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , China , Medios de Cultivo , Germinación , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Hojas de la Planta/microbiología , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo , Zea mays/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...