Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 20(5): e1011273, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38728357

RESUMEN

Existing imaging genetics studies have been mostly limited in scope by using imaging-derived phenotypes defined by human experts. Here, leveraging new breakthroughs in self-supervised deep representation learning, we propose a new approach, image-based genome-wide association study (iGWAS), for identifying genetic factors associated with phenotypes discovered from medical images using contrastive learning. Using retinal fundus photos, our model extracts a 128-dimensional vector representing features of the retina as phenotypes. After training the model on 40,000 images from the EyePACS dataset, we generated phenotypes from 130,329 images of 65,629 British White participants in the UK Biobank. We conducted GWAS on these phenotypes and identified 14 loci with genome-wide significance (p<5×10-8 and intersection of hits from left and right eyes). We also did GWAS on the retina color, the average color of the center region of the retinal fundus photos. The GWAS of retina colors identified 34 loci, 7 are overlapping with GWAS of raw image phenotype. Our results establish the feasibility of this new framework of genomic study based on self-supervised phenotyping of medical images.


Asunto(s)
Fondo de Ojo , Estudio de Asociación del Genoma Completo , Fenotipo , Retina , Humanos , Estudio de Asociación del Genoma Completo/métodos , Retina/diagnóstico por imagen , Masculino , Polimorfismo de Nucleótido Simple , Femenino , Procesamiento de Imagen Asistido por Computador/métodos
2.
Cell Rep ; 42(6): 112596, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37269288

RESUMEN

Neural progenitor cells lengthen their cell cycle to prime themselves for differentiation as development proceeds. It is currently not clear how they counter this lengthening and avoid being halted in the cell cycle. We show that N6-methyladenosine (m6A) methylation of cell-cycle-related mRNAs ensures the proper cell-cycle progression of late-born retinal progenitor cells (RPCs), which are born toward the end of retinogenesis and have long cell-cycle length. Conditional deletion of Mettl14, which is required for depositing m6A, led to delayed cell-cycle exit of late-born RPCs but has no effect on retinal development prior to birth. m6A sequencing and single-cell transcriptomics revealed that mRNAs involved in elongating the cell cycle were highly enriched for m6A, which could target them for degradation and guarantee proper cell-cycle progression. In addition, we identified Zfp292 as a target of m6A and potent inhibitor of RPC cell-cycle progression.


Asunto(s)
Células-Madre Neurales , Retina , Retina/metabolismo , Diferenciación Celular , División Celular , Organogénesis
3.
STAR Protoc ; 3(1): 101143, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35141566

RESUMEN

Ocular drug implants (ODIs) are beneficial for treating ocular diseases. However, the lack of a robust injection approach for small-eyed model organisms has been a major technical limitation in developing ODIs. Here, we present a cost-effective, minimally invasive protocol to deliver ODIs into the mouse vitreous called Mouse Implant Intravitreal Injection (MI3). MI3 provides two alternative surgical approaches (air-pressure or plunger) to deliver micro-scaled ODIs into milli-scaled eyes, and expands the preclinical platforms to determine ODIs' efficacy, toxicity, and pharmacokinetics. For complete details on the use and execution of this protocol, please refer to Sun et al. (2021).


Asunto(s)
Cuerpo Vítreo , Animales , Implantes de Medicamentos/farmacología , Inyecciones Intravítreas , Ratones
4.
J Biol Chem ; 298(4): 101674, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35148987

RESUMEN

Adeno-associated viruses (AAVs) targeting specific cell types are powerful tools for studying distinct cell types in the central nervous system (CNS). Cis-regulatory modules (CRMs), e.g., enhancers, are highly cell-type-specific and can be integrated into AAVs to render cell type specificity. Chromatin accessibility has been commonly used to nominate CRMs, which have then been incorporated into AAVs and tested for cell type specificity in the CNS. However, chromatin accessibility data alone cannot accurately annotate active CRMs, as many chromatin-accessible CRMs are not active and fail to drive gene expression in vivo. Using available large-scale datasets on chromatin accessibility, such as those published by the ENCODE project, here we explored strategies to increase efficiency in identifying active CRMs for AAV-based cell-type-specific labeling and manipulation. We found that prescreening of chromatin-accessible putative CRMs based on the density of cell-type-specific transcription factor binding sites (TFBSs) can significantly increase efficiency in identifying active CRMs. In addition, generation of synthetic CRMs by stitching chromatin-accessible regions flanking cell-type-specific genes can render cell type specificity in many cases. Using these straightforward strategies, we generated AAVs that can target the extensively studied interneuron and glial cell types in the retina and brain. Both strategies utilize available genomic datasets and can be employed to generate AAVs targeting specific cell types in CNS without conducting comprehensive screening and sequencing experiments, making a step forward in cell-type-specific research.


Asunto(s)
Encéfalo , Dependovirus , Retina , Coloración y Etiquetado , Factores de Transcripción , Animales , Sitios de Unión , Encéfalo/citología , Encéfalo/metabolismo , Cromatina/genética , Cromatina/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Ratones , Retina/citología , Retina/metabolismo , Coloración y Etiquetado/métodos , Factores de Transcripción/metabolismo
5.
Cell Rep Methods ; 1(8)2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-35128514

RESUMEN

Using small molecule drugs to treat eye diseases carries benefits of specificity, scalability, and transportability, but their efficacy is significantly limited by a fast intraocular clearance rate. Ocular drug implants (ODIs) present a compelling means for the slow and sustained release of small molecule drugs inside the eye. However, methods are needed to inject small molecule ODIs into animals with small eyes, such as mice, which are the primary genetic models for most human ocular diseases. Consequently, it has not been possible to fully investigate efficacy and ocular pharmacokinetics of ODIs. Here, we present a robust, cost-effective, and minimally invasive method called "mouse implant intravitreal injection" (MI3) to deliver ODIs into mouse eyes. This method will expand ODI research to cover the breadth of human eye diseases modeled in mice.


Asunto(s)
Sistemas de Liberación de Medicamentos , Cuerpo Vítreo , Humanos , Ratones , Animales , Implantes de Medicamentos/farmacología , Inyecciones Intravítreas
6.
Development ; 147(14)2020 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-32631829

RESUMEN

Transcription factors (TFs) are often used repeatedly during development and homeostasis to control distinct processes in the same and/or different cellular contexts. Considering the limited number of TFs in the genome and the tremendous number of events that need to be regulated, re-use of TFs is necessary. We analyzed how the expression of the homeobox TF, orthodenticle homeobox 2 (Otx2), is regulated in a cell type- and stage-specific manner during development in the mouse retina. We identified seven Otx2 cis-regulatory modules (CRMs), among which the O5, O7 and O9 CRMs mark three distinct cellular contexts of Otx2 expression. We discovered that Otx2, Crx and Sox2, which are well-known TFs regulating retinal development, bind to and activate the O5, O7 or O9 CRMs, respectively. The chromatin status of these three CRMs was found to be distinct in vivo in different retinal cell types and at different stages. We conclude that retinal cells use a cohort of TFs with different expression patterns and multiple CRMs with different chromatin configurations to regulate the expression of Otx2 precisely.


Asunto(s)
Factores de Transcripción Otx/metabolismo , Elementos Reguladores de la Transcripción/genética , Retina/metabolismo , Factores de Transcripción/metabolismo , Animales , Cromatina/metabolismo , Fase G2 , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Mutagénesis , Factores de Transcripción Otx/antagonistas & inhibidores , Factores de Transcripción Otx/genética , Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/metabolismo , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Retina/crecimiento & desarrollo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética
7.
Int J Mol Sci ; 20(7)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30979028

RESUMEN

N-retinylidene-N-retinylethanolamine (A2E) and other bisretinoids are components of lipofuscin and accumulate in retinal pigment epithelial (RPE) cells-these adducts are recognized in the pathogenesis of retinal degeneration. Further, blue light-emitting diode (LED) light (BLL)-induced retinal toxicity plays an important role in retinal degeneration. Here, we demonstrate that low-luminance BLL enhances phototoxicity in A2E-laden RPE cells and rats. RPE cells were subjected to synthetic A2E, and the effects of BLL on activation of apoptotic biomarkers were examined by measuring the levels of cleaved caspase-3. BLL modulates the protein expression of zonula-occludens 1 (ZO-1) and paracellular permeability in A2E-laden RPE cells. Early inflammatory and angiogenic genes were also screened after short-term BLL exposure. In this study, we developed a rat model for A2E treatment with or without BLL exposure for 21 days. BLL exposure caused fundus damage, decreased total retinal thickness, and caused neuron transduction injury in the retina, which were consistent with the in vitro data. We suggest that the synergistic effects of BLL and A2E accumulation in the retina increase the risk of retinal degeneration. These outcomes help elucidate the associations between BLL/A2E and angiogenic/apoptotic mechanisms, as well as furthering therapeutic strategies.


Asunto(s)
Luz/efectos adversos , Lipofuscina/metabolismo , Degeneración Retiniana/etiología , Degeneración Retiniana/patología , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/efectos de la radiación , Animales , Apoptosis/efectos de la radiación , Técnicas de Cultivo de Célula , Línea Celular , Lipofuscina/análogos & derivados , Neovascularización Patológica/etiología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Ratas , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/irrigación sanguínea , Epitelio Pigmentado de la Retina/metabolismo , Proteínas de Uniones Estrechas/análisis , Proteínas de Uniones Estrechas/metabolismo
8.
Cell Physiol Biochem ; 51(1): 63-79, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30439705

RESUMEN

BACKGROUND/AIMS: Blue light-emitting diode light (BLL)-induced phototoxicity plays an important role in ocular diseases and causes retinal degeneration and apoptosis in human retinal pigment epithelial (RPE) cells. Cistanche tubulosa extract (CTE) is a traditional Chinese medicine with many beneficial protective properties; however, few studies have examined the ocular protective roles of CTE. In this study, we investigated the mechanisms underlying the effects of CTE on BLL-induced apoptosis in vitro and in vivo. METHODS: RPE cells were applied in the current in vitro study and cell viability was determined by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Apoptosis-related protein expression was determined by western blot analysis and immunofluorescence staining. Brown Norway rats were used to examine exposure to commercially available BLL in vivo. Hematoxylin and eosin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and western blot assays were used to examine retinal morphological deformation. RESULTS: CTE significantly inhibited hydrogen peroxide-, tert-butyl hydroperoxide-, sodium azide-, and BLL-induced RPE damage. Further, CTE reduced the expression of apoptotic markers such as cleaved caspase-3 and TUNEL staining after BLL exposure by inactivating apoptotic pathways, as shown via immunofluorescent staining. In addition, CTE inhibited the BLL-induced phosphorylation of c-Jun N-terminal kinase, extra signal-related kinases 1/2, and p38 in RPE cells. In vivo, the oral administration of CTE rescued 60-day periodic BLL exposure-induced decrements in retinal thickness and reduced the number of TUNEL-positive cells in the brown Norway rat model. CONCLUSION: CTE is a potential prophylactic agent against BLL-induced phototoxicity.


Asunto(s)
Apoptosis/efectos de los fármacos , Cistanche/metabolismo , Luz , Extractos Vegetales/farmacología , Sustancias Protectoras/farmacología , Administración Oral , Animales , Apoptosis/efectos de la radiación , Caspasa 3/metabolismo , Cistanche/química , Peróxido de Hidrógeno/toxicidad , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Sustancias Protectoras/química , Sustancias Protectoras/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ratas , Retina/efectos de los fármacos , Retina/fisiología , Degeneración Retiniana/patología , Degeneración Retiniana/prevención & control , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo
9.
Toxicol Sci ; 157(1): 196-210, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28184904

RESUMEN

Blue light-induced phototoxicity plays an important role in retinal degeneration and might cause damage as a consequence of smartphone dependency. Here, we investigated the effects of periodic exposure to blue light-emitting diode in a cell model and a rat retinal damage model. Retinal pigment epithelium (RPE) cells were subjected to blue light in vitro and the effects of blue light on activation of key apoptotic pathways were examined by measuring the levels of Bcl-2, Bax, Fas ligand (FasL), Fas-associated protein with death domain (FADD), and caspase-3 protein. Blue light treatment of RPE cells increased Bax, cleaved caspase-3, FasL, and FADD expression, inhibited Bcl-2 and Bcl-xL accumulation, and inhibited Bcl-2/Bax association. A rat model of retinal damage was developed with or without continuous or periodic exposure to blue light for 28 days. In this rat model of retinal damage, periodic blue light exposure caused fundus damage, decreased total retinal thickness, caused atrophy of photoreceptors, and injured neuron transduction in the retina.


Asunto(s)
Apoptosis/efectos de la radiación , Luz , Retina/efectos de la radiación , Teléfono Inteligente , Proteína X Asociada a bcl-2/metabolismo , Animales , Células Cultivadas , Unión Proteica , Ratas
10.
Toxicol Sci ; 147(2): 317-25, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26141393

RESUMEN

To determine the toxic effects of long-term topical usage of fluorometholone (FLM) on ganglion cells using a direct in vivo retinopathological Brown Norway (BN) rat model. The BN rat retinal model was investigated with a minimum of 3 rats and a maximum of 4 rats per group. Rats received vehicle and 0.02% FLM suspension via topical administration 3 times a day for 28 days. The fundus images and retinal vessels were detected on days 1, 14, and 28 using Micron III retinal imaging microscope and fundus fluorescein angiography (FFA). For retinal structures, spectral-domain optical coherence tomography (SD-OCT) images were taken after FFA on days 1, 14, and 28 using an SD-OCT Imaging System. For retinal function, electrical signal transduction of photoreceptors and bipolar cells was determined by electroretinographic (ERG) recording on days 1 and 28 and IOP detection. At the end of the experiment on day 28, immunohistochemistry and TUNEL assay were performed to investigate apoptosis in ganglion cells. Total retina and nerve fiber layer (NFL) to the inner plexiform layer (IPL) were significantly thinner following 28 days of FLM treatment. Hematoxylin and eosin stain showed that there were NFL and ganglion cell layer deformations in the FLM group. With FLM treatment, TUNEL assay showed approximately a 4.68-fold increase in apoptotic cells. Moreover, FLM decreased ERG b-wave amplitude by about 56%. Using ophthalmofundoscopy devices, after 28 days of topical administration, FLM decreased NFL-IPL and total retina thickness. This suggests that long-term FLM induces adverse effects with respect to ganglion cell apoptosis.


Asunto(s)
Fluorometolona/efectos adversos , Glucocorticoides/efectos adversos , Células Ganglionares de la Retina/efectos de los fármacos , Administración Oftálmica , Animales , Apoptosis/efectos de los fármacos , Electrorretinografía , Fluorometolona/administración & dosificación , Fondo de Ojo , Glucocorticoides/administración & dosificación , Etiquetado Corte-Fin in Situ , Soluciones Oftálmicas , Ratas , Ratas Endogámicas BN , Células Ganglionares de la Retina/patología , Tomografía de Coherencia Óptica
11.
J Agric Food Chem ; 60(29): 7262-9, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22746947

RESUMEN

Obesity is a global health problem. Because of the high costs and side effects of obesity-treatment drugs, the potential of natural products as alternatives for treating obesity is under exploration. 2,4,5-Trimethoxybenzaldehyde (2,4,5-TMBA) present in plant roots, seeds, and leaves was reported to be a significant inhibitor of cyclooxygenase-2 (COX-2) activity at the concentration of 100 µg/mL. Because COX-2 is associated with differentiation of preadipocytes, the murine 3T3-L1 cells were cultured with 100 µg/mL of 2,4,5-TMBA during differentiation and after the cells were fully differentiated to study the effect of 2,4,5-TMBA on adipogenesis and lipolysis. Oil Red O staining and triglyceride assay revealed that 2,4,5-TMBA inhibited the formation of lipid droplets during differentiation; moreover, 2,4,5-TMBA down-regulated the protein levels of adipogenic signaling molecules and transcription factors MAP kinase kinase (MEK), extracellular signal-regulated kinase (ERK), CCAAT/enhancer binding protein (C/EBP)α, ß, and δ, peroxisome proliferator-activated receptor (PPAR)γ, adipocyte determination and differentiation-dependent factor 1 (ADD1), and the rate-limiting enzyme for lipid synthesis acetyl-CoA carboxylase (ACC). In fully differentiated adipocytes, treatment with 2,4,5-TMBA for 72 h significantly decreased lipid accumulation by increasing the hydrolysis of triglyceride through suppression of perilipin A (lipid droplet coating protein) and up-regulation of hormone-sensitive lipase (HSL). The results of this in vitro study will pioneer future in vivo studies on antiobesity effects of 2,4,5-TMBA and selective COX-2 inhibitors.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Benzaldehídos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Lipólisis/efectos de los fármacos , Células 3T3-L1 , Animales , Fármacos Antiobesidad , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...