Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Food Res Int ; 186: 114339, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729694

RESUMEN

The health-promoting activities of polyphenols and their metabolites originating from germinated quinoa (GQ) are closely related to their digestive behavior, absorption, and colonic fermentation; however, limited knowledge regarding these properties hinder further development. The aim of this study was to provide metabolomic insights into the profile, bioaccessibility, and transepithelial transport of polyphenols from germinated quinoa during in vitro gastrointestinal digestion and Caco-2 cell transport, whilst also investigating the changes in the major polyphenol metabolites and the effects of prebiotics during colonic fermentation. It was found that germination treatment increased the polyphenol content of quinoa by 21.91%. Compared with RQ group, 23 phenolic differential metabolites were upregulated and 47 phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after simulated digestion, 7 kinds of phenolic differential metabolites were upregulated and 17 kinds of phenolic differential metabolites were downregulated in GQ group. Compared with RQ group after cell transport, 7 kinds of phenolic differential metabolites were upregulated and 9 kinds of phenolic differential metabolites were downregulated in GQ group. In addition, GQ improved the bioaccessibilities and transport rates of various polyphenol metabolites. During colonic fermentation, GQ group can also increase the content of SCFAs, reduce pH value, and adjust gut microbial populations by increasing the abundance of Actinobacteria, Bacteroidetes, Verrucomicrobiota, and Spirochaeota at the phylum level, as well as Bifidobacterium, Megamonas, Bifidobacterium, Brevundimonas, and Bacteroides at the genus level. Furthermore, the GQ have significantly inhibited the activity of α-amylase and α-glucosidase. Based on these results, it was possible to elucidate the underlying mechanisms of polyphenol metabolism in GQ and highlight its beneficial effects on the gut microbiota.


Asunto(s)
Chenopodium quinoa , Colon , Digestión , Fermentación , Metabolómica , Polifenoles , Prebióticos , Humanos , Polifenoles/metabolismo , Chenopodium quinoa/metabolismo , Células CACO-2 , Colon/metabolismo , Colon/microbiología , Germinación , Transporte Biológico , Disponibilidad Biológica , Microbioma Gastrointestinal/fisiología
2.
Foods ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38672844

RESUMEN

Colorectal carcinoma (CRC) is a major global health concern, with cancer metastasis being the main cause of patient mortality, and current CRC treatments are challenged by drug resistance. Although natural compounds, especially in foods like hawthorn proanthocyanidin extract (HPOE), have good anticancer activity, their effects on CRC metastasis remain unknown. Therefore, our objective was to investigate the impact and potential mechanisms of HPOE on the movement and infiltration of cells in the HCT116 CRC cells. Firstly, scratch-healing experiments confirmed the anti-migratory and anti-invasive capabilities of HPOE. Then, network pharmacology identified 16 possible targets, including MMP-9. Subsequently, RT-qPCR and Western blotting experiments confirmed that HPOE downregulated epithelial-mesenchymal transition-related factors (N-cadherin and MMP-9) and inhibited Wnt/ß-catenin pathway activation. Finally, these results were experimentally validated using the Wnt pathway activator Licl and inhibitor XAV939. It was confirmed that HPOE had a certain inhibitory effect on the activation of the Wnt signaling pathway caused by the activator Licl and could enhance the inhibitory effect of the inhibitor XAV939. Our findings provide a basis for developing functional foods or dietary supplements, especially positioning HPOE as a functional food raw material for adjuvant treatment of CRC, given its ability to inhibit metastasis through the Wnt/ß-catenin pathway.

3.
J Biol Chem ; 300(5): 107212, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38522513

RESUMEN

As an output effector of the Hippo signaling pathway, the TEAD transcription factor and co-activator YAP play crucial functions in promoting cell proliferation and organ size. The tumor suppressor NF2 has been shown to activate LATS1/2 kinases and interplay with the Hippo pathway to suppress the YAP-TEAD complex. However, whether and how NF2 could directly regulate TEAD remains unknown. We identified a direct link and physical interaction between NF2 and TEAD4. NF2 interacted with TEAD4 through its FERM domain and C-terminal tail and decreased the protein stability of TEAD4 independently of LATS1/2 and YAP. Furthermore, NF2 inhibited TEAD4 palmitoylation and induced the cytoplasmic translocation of TEAD4, resulting in ubiquitination and dysfunction of TEAD4. Moreover, the interaction with TEAD4 is required for NF2 function to suppress cell proliferation. These findings reveal an unanticipated role of NF2 as a binding partner and inhibitor of the transcription factor TEAD, shedding light on an alternative mechanism of how NF2 functions as a tumor suppressor through the Hippo signaling cascade.

4.
Int J Pharm ; 653: 123897, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38360289

RESUMEN

Surgical removal combined with postoperative chemotherapy is still the mainstay of treatment for most solid tumors. Although chemotherapy reduces the risk of recurrence and metastasis after surgery, it may produce serious adverse effects and impair patient compliance. In situ drug delivery systems are promising tools for postoperative cancer treatment, improving drug delivery efficiency and reducing side effects. Herein, an injectable phospholipid-based in situ forming gel (IPG) was prepared for the co-delivery of antitumor agent pirarubicin (THP) and cyclooxygenase-2 (COX-2) inhibitor celecoxib (CXB) in the surgical incision, and the latter are used extensively in adjuvant chemotherapy for cancer. After injection, the IPG co-loaded with THP and CXB (THP-CXB-IPG) underwent spontaneous phase transition and formed a drug reservoir that fitted the irregular surgical incisions perfectly. In vitro drug release studies and in vivo pharmacokinetic analysis had demonstrated the sustained release behaviors of THP-CXB-IPG. The in vivo therapeutic efficacy was evaluated in mice that had undergone surgical resection of breast cancer, and the THP-CXB-IPG showed considerable inhibition of residual tumor growth after surgery and reduced the incidence of pulmonary metastasis. Moreover, it reduced the systemic toxicity of chemotherapeutic agents. Therefore, THP-CXB-IPG can be a promising candidate for preventing postoperative recurrence and metastasis.


Asunto(s)
Neoplasias de la Mama , Doxorrubicina/análogos & derivados , Humanos , Ratones , Animales , Femenino , Celecoxib , Neoplasias de la Mama/tratamiento farmacológico , Inhibidores de la Ciclooxigenasa 2/farmacología
5.
Food Funct ; 15(5): 2628-2644, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38358014

RESUMEN

As one of the most significant pathological changes of diabetic nephropathy (DN), tubulointerstitial fibrosis (TIF) had a close relationship with tubulointerstitial inflammation (TI), and the occurrence of TI could have resulted from the disrupted tight junctions (TJs) of renal tubular epithelial cells (RTECs). Studies have demonstrated that sodium butyrate (NaB), a typical short chain fatty acid (SCFA), played an important regulatory role in intestinal TJs and inflammation. In this study, our in vivo and in vitro results showed that accompanied by TI, renal tubular TJs were gradually disrupted in the process of DN-related TIF. In HG and LPS co-cultured HK-2 cells and db/db mice, NaB treatment regained the TJs of RTECs via the sphingosine 1-phosphate receptor-1 (S1PR1)/AMPK signaling pathway, relieving inflammation. Small interfering RNA of S1PR1, S1PR1 antagonist W146 and agonist SEW2871, and AMPK agonist AICAR were all used to further confirm the essential role of the S1PR1/AMPK signaling pathway in NaB's TJ protection in RTECs in vitro. Finally, NaB administration not only improved the renal function and TIF, but also relieved the TI of db/db mice. These findings suggested that the use of NaB might be a potential adjuvant treatment strategy for DN-associated TIF, and this protective effect was linked to the TJ modulation of RTECs via the S1PR1/AMPK signaling pathway, leading to the improvement of TI.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Ácido Butírico/farmacología , Ácido Butírico/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Uniones Estrechas/metabolismo , Células Epiteliales/metabolismo , Fibrosis , Diabetes Mellitus/metabolismo
7.
ACS Appl Mater Interfaces ; 16(9): 11239-11250, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38395769

RESUMEN

Hepatic cirrhosis has become a global public health concern with high mortality and currently lacks effective clinical treatment methods. Activation of hepatic stellate cells (HSCs) and the large number of macrophages infiltrating into the liver play a critical role in the development of liver cirrhosis. This study developed a novel modified nanoparticle system (SRF-CS-PSA NPs) in which Sorafenib (SRF) was encapsulated by palmitic acid-modified albumin (PSA) and further modified with chondroitin sulfate (CS). These modifications enabled the SRF-CS-PSA NPs to effectively target hepatic stellate cells (HSCs) and macrophages. SRF-CS-PSA NPs showed uniform particle size distribution of approximately 120 nm and high loading efficiency of up to 99.5% and can be taken up by HSCs and macrophages via CD44 and SR-A receptors, respectively. In a mouse model of liver cirrhosis, SRF-CS-PSA NPs demonstrated superior targeting and inhibition of HSCs and macrophages, effectively reversing the process of liver cirrhosis. Overall, our study demonstrates the potential of SRF-CS-PSA NPs as a targeted therapy for liver cirrhosis, with promising clinical applications.


Asunto(s)
Células Estrelladas Hepáticas , Nanopartículas , Ratones , Animales , Cirrosis Hepática/tratamiento farmacológico , Hígado/patología , Sorafenib/uso terapéutico , Albúminas
8.
Small Methods ; : e2301631, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38419597

RESUMEN

A universal platform is developed for dropletizing single cell plate-based multiomic assays, consisting of three main pillars: a miniaturized open Heterogeneous Hydrogel reactor (abbreviated HetHydrogel) for multi-step biochemistry, its tunable permeability that allows Tn5 tagmentation, and single cell droplet barcoding. Through optimizing the HetHydrogel manufacturing procedure, the chemical composition, and cell permeation conditions, simultaneous high-throughput mitochondrial DNA genotyping and chromatin profiling at the single-cell level are demonstrated using a mixed-species experiment. This platform offers a powerful way to investigate the genotype-phenotype relationships of various mtDNA mutations in biological processes. The HetHydrogel platform is believed to have the potential to democratize droplet technologies, upgrading a whole range of plate-based single cell assays to high throughput format.

9.
Infect Drug Resist ; 17: 485-494, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348228

RESUMEN

Purpose: To understand the detection rate and distribution characteristics of Linezolid-nonsusceptible Enterococcus (LNSE) and analyze the molecular typing and main drug resistance mechanisms of LNSE, providing a theoretical basis for the precision prevention and control of LNSE hospital infections. Methods: A total of 40 LNSE strains isolated from clinical specimens between January 1, 2012, and December 31, 2022, were collected. The LNSE isolates identified by instrument detection were confirmed using a microbroth dilution method. The WHONET 5.0 software was used for statistical analysis of LNSE detection rate, and the LNSE judgment was based on the 2022 CLSI criteria. PCR methods were used to detect 23S rRNA, cfr, optrA, and L3, L4 ribosomal RNA sites for linezolid resistance genes, and gene sequencing was used to verify the amplified PCR products. Multiple locus sequence typing (MLST) was performed to analyze the homology of LNSE strains. Results: A total of 6924 Enterococcus isolates were separated and identified from January 1, 2012, to December 31, 2022, of which 40 were LNSE strains (26 Enterococcus faecalis, 14 Enterococcus faecium), with a detection rate of 0.58% (40/6924). Among them, 28 Linezolid-intermediated Enterococcus(LIE) were detected, accounting for 0.4% (28/6924), and 12 Linezolid-resistant Enterococcus(LRE) were detected, with a detection rate of 0.17% (12/6924). Among the LNSE strains, 23 were resistant to genes. The 40 LNSE strains could be divided into 20 different ST types, with ST16 being the main type, accounting for 12.5% (5/40). Conclusion: The detection of LNSE strains was dominated by Enterococcus faecalis, and the main resistance mechanism of LRE strains was carrying the optrA gene, with 23S rRNA gene mutations also contributing to resistance. New resistance gene phenotypes (optrA +/23S rRNA+) emerged. Most LRE cases were sporadic, and clonal dissemination was observed in some strains.

10.
Polymers (Basel) ; 16(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38256966

RESUMEN

In this study, we successfully prepared porous composite microspheres composed of hydroxyapatite (HAp), di-calcium phosphate di-hydrated (DCPD), and chitosan through the hydrothermal method. The chitosan played a crucial role as a chelating agent to facilitate the growth of related calcium phosphates. The synthesized porous composite microspheres exhibit a specific surface area of 38.16 m2/g and a pore volume of 0.24 cm3/g, with the pore size ranging from 4 to 100 nm. Given the unique properties of chitosan and the exceptional porosity of these composite microspheres, they may serve as carriers for pharmaceuticals. After being annealed, the chitosan transforms into a condensed form and the DCPD transforms into Ca2P2O7 at 300 °C. Then, the Ca2P2O7 initially combines with HAp to transform into ß tricalcium phosphate (ß-TCP) at 500 °C where the chitosan is also completely combusted. Finally, the microspheres are composed of Ca2P2O7, ß-TCP, and HAp, also making them suitable for applications such as injectable bone graft materials.

12.
ACS Nano ; 17(24): 24972-24987, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38093174

RESUMEN

Tumor metastasis is an intricate multistep process regulated via various proteins and enzymes modified and secreted by swollen Golgi apparatus in tumor cells. Thus, Golgi complex is considered as an important target for the remedy of metastasis. Currently, Golgi targeting technologies are mostly employed in Golgi-specific fluorescent probes for diagnosis, but their applications in therapy are rarely reported. Herein, we proposed a prodrug (INR) that can target and destroy the Golgi apparatus, which consisted of indomethacin (IMC) as the Golgi targeting moiety and retinoic acid (RA), a Golgi disrupting agent. The linker between IMC and RA was designed as a hypoxia-responsive nitroaromatic structure, which ensured the release of the prototype drugs in the hypoxic tumor microenvironment. Furthermore, INR could be assembled with pirarubicin (THP), an anthracycline, to form a carrier-free nanoparticle (NP) by emulsion-solvent evaporation method. A small amount of mPEG2000-DSPE was added to shield the positive charges and improve the stability of the nanoparticle to obtain PEG-modified nanoparticle (PNP). It was proved that INR released the prototype drugs in tumor cells and hypoxia promoted the release. The Golgi destructive effect of RA in INR was amplified owing to the Golgi targeting ability of IMC, and IMC also inhibited the protumor COX-2/PGE2 signaling. Finally, PNP exhibited excellent curative efficacy on 4T1 primary tumor and its pulmonary and hepatic metastasis. The small molecular therapeutic prodrug targeting Golgi apparatus could be adapted to multifarious drug delivery systems and disease models, which expanded the application of Golgi targeting tactics in disease treatment.


Asunto(s)
Nanopartículas , Profármacos , Humanos , Profármacos/química , Antraciclinas/metabolismo , Antraciclinas/farmacología , Sistemas de Liberación de Medicamentos , Antibióticos Antineoplásicos/farmacología , Nanopartículas/química , Hipoxia/tratamiento farmacológico , Aparato de Golgi , Línea Celular Tumoral
13.
Biology (Basel) ; 12(11)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37998005

RESUMEN

Repeat-mediated deletion (RMD) rearrangement is a major source of genome instability and can be deleterious to the organism, whereby the intervening sequence between two repeats is deleted along with one of the repeats. RMD rearrangement is likely induced by DNA double-strand breaks (DSBs); however, it is unclear how the complexity of DSBs influences RMD rearrangement. Here, a transgenic Escherichia coli strain K12 MG1655 with a lacI repeat-controlled amp activation was used while taking advantage of particle irradiation, such as proton and carbon irradiation, to generate different complexities of DSBs. Our research confirmed the enhancement of RMD under proton and carbon irradiation and revealed a positive correlation between RMD enhancement and LET. In addition, RMD enhancement could be suppressed by an intermolecular homologous sequence, which was regulated by its composition and length. Meanwhile, RMD enhancement was significantly stimulated by exogenous λ-Red recombinase. Further results investigating its mechanisms showed that the enhancement of RMD, induced by particle irradiation, occurred in a RecA-dependent manner. Our finding has a significant impact on the understanding of RMD rearrangement and provides some clues for elucidating the repair process and possible outcomes of complex DNA damage.

14.
ISA Trans ; 143: 286-297, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37827905

RESUMEN

This paper aims to investigate the guaranteed cost control via dynamic output feedback for nonlinear networked control systems (NCSs) with consideration of hybrid communication mechanism, data dropout and bounded disturbance. Interval type-2 (IT2) Takagi-Sugeno (T-S) fuzzy model is utilized to describe the nonlinear system with parameter uncertainties. To enhance bandwidth utilization and improve control performance, a hybrid communication mechanism involving both event-triggered mechanism (ETM) and time-triggered mechanism (TTM) is proposed. Two Bernoulli processes are invoked to describe the switching between two triggering mechanisms, and the data dropout phenomenon in communication network, respectively. The quadratic boundedness (QB) technique is employed to specify the closed-loop stability of a bounded disturbance networked system. The sufficient conditions for the stability of the system and the presence of a dynamic output feedback guaranteed cost controller are presented. In addition, the problem of controller design is converted to a convex optimization problem that can be tackled by linear matrix inequalities (LMIs) technique. At last, simulation experiment is carried out to explicate the availability and usefulness of the designed controller.

15.
Ecotoxicol Environ Saf ; 264: 115456, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37714035

RESUMEN

Exposure to particulate matter (PM) from agricultural environments has been extensively reported to cause respiratory health concerns in both animals and agricultural workers. Furthermore, PM from agricultural environments, containing fungal spores, has emerged as a significant threat to public health and the environment. Despite its potential toxicity, the impact of fungal spores present in PM from agricultural environments on the lung microbiome and metabolic profile is not well understood. To address this gap in knowledge, we developed a mice model of immunodeficiency using cyclophosphamide and subsequently exposed the mice to fungal spores via the trachea. By utilizing metabolomics techniques and 16 S rRNA sequencing, we conducted a comprehensive investigation into the alterations in the lung microbiome and metabolic profile of mice exposed to fungal spores. Our study uncovered significant modifications in both the lung microbiome and metabolic profile post-exposure to fungal spores. Additionally, fungal spore exposure elicited noticeable changes in α and ß diversity, with these microorganisms being closely associated with inflammatory factors. Employing non-targeted metabolomics analysis via GC-TOF-MS, a total of 215 metabolites were identified, among which 42 exhibited significant differences. These metabolites are linked to various metabolic pathways, with amino sugar and nucleotide sugar metabolism, as well as galactose metabolism, standing out as the most notable pathways. Cysteine and methionine metabolism, along with glycine, serine and threonine metabolism, emerged as particularly crucial pathways. Moreover, these metabolites demonstrated a strong correlation with inflammatory factors and exhibited significant associations with microbial production. Overall, our findings suggest that disruptions to the microbiome and metabolome may hold substantial relevance in the mechanism underlying fungal spore-induced lung damage in mice.


Asunto(s)
Metaboloma , Microbiota , Animales , Ratones , Esporas Fúngicas , Metabolómica , Agricultura , Material Particulado
16.
Pharmaceutics ; 15(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37631239

RESUMEN

Hydroxyapatite-gelatin microspheres with cone-like pores were synthesized via the wet-chemical method using ammonium dihydrogen phosphate ((NH4)H2PO4) and calcium nitrate (Ca(NO3)2·4H2O) as a source of calcium and phosphate ions with the addition of gelatin, which proved to be more osteoconductive than commercial products, such as fibrin glue and Osteoset® Bone Graft Substitute. Following the method of the previous study for loading paclitaxel (PTX), a drug entrapment efficiency of around 58% was achieved, which is much lower than that of the doxorubicin (DOX)-loaded one. Since PTX is hydrophobic while DOX is hydrophilic, the order of chitosan processing and addition of the solvent were tuned in this study, finally leading to an increase in drug entrapment efficiency of 94%. Additionally, the release duration of PTX exceeded six months. The MTT assay indicated that the effect of drug release on the suppression of cancer cells reached more than 40% after one week, thereby showcasing PTX's capacity to carry out its medicinal functions without being affected by the loading procedures.

17.
bioRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37645762

RESUMEN

The extracellular matrix (ECM) supports blood vessel architecture and functionality and undergoes active remodelling during vascular repair and atherogenesis. Vascular smooth muscle cells (VSMCs) are essential for vessel repair and, via their secretome, are able to invade from the vessel media into the intima to mediate ECM remodelling. Accumulation of fibronectin (FN) is a hallmark of early vascular repair and atherosclerosis and here we show that FN stimulates VSMCs to secrete small extracellular vesicles (sEVs) by activating the ß1 integrin/FAK/Src pathway as well as Arp2/3-dependent branching of the actin cytoskeleton. Spatially, sEV were secreted via filopodia-like cellular protrusions at the leading edge of migrating cells. We found that sEVs are trapped by the ECM in vitro and colocalise with FN in symptomatic atherosclerotic plaques in vivo. Functionally, ECM-trapped sEVs induced the formation of focal adhesions (FA) with enhanced pulling forces at the cellular periphery. Proteomic and GO pathway analysis revealed that VSMC-derived sEVs display a cell adhesion signature and are specifically enriched with collagen VI. In vitro assays identified collagen VI as playing the key role in cell adhesion and invasion. Taken together our data suggests that the accumulation of FN is a key early event in vessel repair acting to promote secretion of collage VI enriched sEVs by VSMCs. These sEVs stimulate migration and invasion by triggering peripheral focal adhesion formation and actomyosin contraction to exert sufficient traction forces to enable VSMC movement within the complex vascular ECM network.

18.
Asian J Pharm Sci ; 18(3): 100813, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37274920

RESUMEN

Acute liver injury (ALI) has an elevated fatality rate due to untimely and ineffective treatment. Although, schisandrin B (SchB) has been extensively used to treat diverse liver diseases, its therapeutic efficacy on ALI was limited due to its high hydrophobicity. Palmitic acid-modified serum albumin (PSA) is not only an effective carrier for hydrophobic drugs, but also has a superb targeting effect via scavenger receptor-A (SR-A) on the M1 macrophages, which are potential therapeutic targets for ALI. Compared with the common macrophage-targeted delivery systems, PSA enables site-specific drug delivery to reduce off-target toxicity. Herein, we prepared SchB-PSA nanoparticles and further assessed their therapeutic effect on ALI. In vitro, compared with human serum albumin encapsulated SchB nanoparticles (SchB-HSA NPs), the SchB-PSA NPs exhibited more potent cytotoxicity on lipopolysaccharide (LPS) stimulated Raw264.7 (LAR) cells, and LAR cells took up PSA NPs 8.79 times more than HSA NPs. As expected, the PSA NPs also accumulated more in the liver. Moreover, SchB-PSA NPs dramatically reduced the activation of NF-κB signaling, and significantly relieved inflammatory response and hepatic necrosis. Notably, the high dose of SchB-PSA NPs improved the survival rate in 72 h of ALI mice to 75%. Hence, SchB-PSA NPs are promising to treat ALI.

19.
Proc Natl Acad Sci U S A ; 120(17): e2214262120, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068224

RESUMEN

We evaluate the effect of rotating inspections carried out by China's central government in 2016 to 2017 in response to the country's air pollution crisis on the environmental performance of targeted cities and coal power plants. Using a staggered difference-in-differences (DID) design, we find that during one-month inspections concentrations of sulfur dioxide (SO2) at coal power plants in targeted cities are on average lower by 25 to 52% compared to not-yet-inspected cities but revert by 54 to 62% on average once scrutiny ends. Following inspections, SO2 pollution increases more quickly at state-owned plants accountable to the central government, compared to state-owned plants accountable to the local (city or below) government. Our results suggest that for most plants SO2 concentration changes during inspections may have been due primarily to the operation of end-of-pipe SO2 removal devices, while following inspections local state-owned plants may have reduced output.

20.
J Agric Food Chem ; 71(17): 6635-6649, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37083411

RESUMEN

Triterpenoids derived from natural products can exert antihyperuricemic effects. Here, we investigated the antihyperuricemic activity and mechanism of quinoa bran saponins (QBSs) in hyperuricemic mouse and cell models. The QBS4 fraction, with the highest saponin content, was used. Fourier-transform infrared, high-performance liquid chromatography, and ultrahigh-performance liquid chromatography-mass spectrometry identified 11 individual saponins in QBS4, of which the main components were hederagenin and oleanolic acid. The QBS4 effects on hyperuricemic mice (induced by adenine and potassium oxonate) were then studied. QBS4 reduced the levels of uric acid (UA), serum urea nitrogen, creatinine, and lipids in mice with hyperuricemia (HUA) and decreased renal inflammation and renal damage. Molecular analysis revealed that QBS4 may alleviate HUA by regulating the expression of key genes involved in the transport of UA and by inhibiting the activation of the PI3K/AKT/NFκB inflammatory signaling pathway. In conclusion, QBS4 has promise for using as a natural dietary supplement to treat and prevent HUA.


Asunto(s)
Lesión Renal Aguda , Chenopodium quinoa , Hiperuricemia , Chenopodium quinoa/química , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Saponinas/uso terapéutico , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Masculino , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...