Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; : 176282, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278502

RESUMEN

Black shale is a type of sedimentary rocks that are enriched in rare earth elements (REEs). It is of both economic importance and environmental significance to understand REE mobility during black shale weathering. The present study approaches to this by analysing REEs in acid rock drainage (ARD) from black shale weathering system, fresh and weathered black shales, soils derived from black shales, and sequential extractants from black shales at Dongping town in Hunan province (China). Results showed that REEs had variable high concentrations in ARD as shown by total REE + Y (∑REY) concentrations from 162 to 4074 (µg/L). REEs in ARD displayed hat-shape NASC-normalized patterns with significant enrichments of middle REEs (MREE) relative to light REEs (LREE) and heavy REEs (HREE), and had significant negative Ce (Ce/Ce⁎ = 0.6) and positive Y (Y/Y⁎ = 1.5) anomalies. MREE enrichment in ARD could be evaluated using MREE/MREE⁎ values, which varied from 1.43 to 1.81 with a mean of 1.65, distinctly higher than those of whole rocks (around 1.0). 1 M HCl extraction results suggested that REEs were integratedly mobilized during shale weathering, while six-step extraction studies identified that REEs in ARD resulted from exchangeable and Fe-oxide fractions with MREE and HREE enrichment in shales respectively. MREE in exchangeable and HREE in Fe-oxide fractions were preferentially released during weathering, as illustrated by plots of MREE/MREE⁎ against HREE/LREE ratios of ARD and six-step extractants. Therefore, geochemical processes for REE mobility during black shale weathering included integrated mobilization and preferential release. Integrated REE mobilization resulted from the dissolution of REE-bearing minerals and oxidation of sulfides. Preferential REE release resulted from acid fluids produced by sulfide oxidation during weathering. Thus, a new model was proposed for interpreting geochemical processes of REE mobility during black shale weathering, and for understanding REE distribution in ARD from natural and anthropogenic systems.

2.
J Hazard Mater ; 470: 134267, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608591

RESUMEN

Carbonaceous black shale generally contains high concentration of Cd, with weathering leading to Cd release to environment. In this study, the mobility of Cd during weathering was quantified using geochemical assessment on black shale from western Hunan, China. Results suggested that Cd was heterogeneously distributed in shale profiles with concentrations ranging from 0.16 to 109.9 (mg/kg). Cd distribution was heterogeneous resulting from the parent shale inheritance and the mobility of Cd during weathering. Black shales weathered to a moderate degree with Cd mobility characterized by both enrichment in and release from weathered shales. Cd enrichment in weathered shales resulted from the re-enrichment of Cd in secondary minerals formed during the initial stage of carbonate (and phosphorite) dissolution, and the secondary stage of sulfide oxidation. The release of Cd was caused by decomposition of the secondary Cd-bearing minerals. Cadmium was extensively released during pedogenesis, and Cd release mass flux was estimated to range from 1.26 to 9.50 (g/m2) with a mean of 6.60 g/m2. Thus, black shale weathering may lead to the releasing of large amount of Cd resulting in Cd contamination to local environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA