Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(21): e2301199, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37132585

RESUMEN

Sensors based on triboelectric nanogenerators (TENGs) have gained worldwide interest owing to their advantages of low cost and self-powering. However, the detection of most triboelectric vibration sensors (TVS) is restricted to low frequency, whereas high-frequency vibration signals are successfully measured in recent studies; their sensitivity still requires improvement. Hence, a highly sensitive vibration sensor based on TENG (HSVS-TENG) with ultrawide frequency response is presented. This study is the first to introduce a quasi-zero stiffness structure into the TENG to minimize the driving force by optimizing the magnetic induction intensity and the weight of the moving part. The results show that the HSVS-TENG can measure vibrations with frequencies ranging from 2.5 to 4000 Hz, with a sensitivity ranging from 0.32 to 134.9 V g-1 . Moreover, the sensor exhibits a good linear response versus the applied acceleration, and the linearity ranges from 0.08 to 2.81 V g-1 . The self-powered sensor can monitor the running state and fault type of the key components with a recognition accuracy of 98.9% by leveraging machine-learning algorithms. The results reach a new height for the ultrawide frequency response and high sensitivity of the TVS and provide an idea for a follow-up high-resolution TVS.

2.
Micromachines (Basel) ; 15(1)2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38258164

RESUMEN

Ultrasonic flowmeter is one of the most widely used devices in flow measurement. Traditional bulk piezoelectric ceramic transducers restrict their application to small pipe diameters. In this paper, we propose an ultrasonic gas flowmeter based on a PZT piezoelectric micromachined ultrasonic transducer (PMUT) array. Two PMUT arrays with a resonant frequency of 125 kHz are used as the sensitive elements of the ultrasonic gas flowmeter to realize alternate transmission and reception of ultrasonic signals. The sensor contains 5 × 5 circular elements with a size of 3.7 × 3.7 mm2. An FPGA with a resolution of ns is used to process the received signal, and a flow system with overlapping acoustic paths and flow paths is designed. Compared with traditional measurement methods, the sensitivity is greatly improved. The flow system achieves high-precision measurement of gas flow in a 20 mm pipe diameter. The flow measurement range is 0.5-7 m/s and the relative error of correction is within 4%.

3.
Research (Wash D C) ; 2022: 9765634, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299448

RESUMEN

Available, effectively converting low-frequency vibration into available electricity, triboelectric nanogenerator (TENG) is always research hot nowadays. However, the enhancing effect of the existing methods for the output have all sorts of drawbacks, i.e., low efficiency and unstable, and its practical applications still need to be further explored. Here, leveraging core-shell nanoparticles Ag@SiO2 doping into tribo-materials generates the surface plasmon effect to boost the output performance of the TENG. On one hand, the shell alleviated the seepage effect from conventional nanoparticles; on the other hand, the surface plasmon effect enabled the core-shell nanoparticles to further boost the output performance of TENG. We circumvent the limitations and present a TENG whose output power density can be up to 4.375 mW/cm2. Points is that this article novelty investigate the high-performance TENG applicating for traditional Chinese medicine and develop a pratical self-powered acupuncture system. This technology enables rapid, routine regulation of human health at any age, which has potential applications in nearly any setting across healthcare platforms alike.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...