Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.412
Filtrar
1.
Nucl Med Biol ; 134-135: 108915, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38723361

RESUMEN

BACKGROUND: The polyamine transporter system (PTS), which renders it a promising target for tumor therapy and imaging applications, facilitates the transmembrane transport of polyamines. We reported a novel derivative of spermine labeled with gallium-68 ([68Ga]Ga-NOTA-Spermine) for the imaging of the PTS in mouse models of tumor. RESULTS: The radiochemical yield of [68Ga]Ga-NOTA-Spermine was determined to be 64-69 %, demonstrating exceptional stability and radiochemical purity (>98 %). Cellular uptake experiments revealed that A549 cells exhibited peak uptake of [68Ga]Ga-NOTA-Spermine at 90 min (15.4 % ± 0.68 %). Biodistribution analysis demonstrated significant accumulation of [68Ga]Ga-NOTA-Spermine in kidneys and liver, while exhibiting low uptake levels in muscle, brain, and bones. Furthermore, Micro-PET/CT scans conducted on A549 tumor-bearing mouse models indicated substantial uptake of [68Ga]Ga-NOTA-Spermine, with maximum tumor/muscle (T/M) ratios reaching 3.71. CONCLUSION: These results suggest that [68Ga]Ga-NOTA-Spermine holds potential as a PET imaging agent for tumors with high levels of PTS.

2.
Gut ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724219

RESUMEN

OBJECTIVE: The remodelling of gut mycobiome (ie, fungi) during pregnancy and its potential influence on host metabolism and pregnancy health remains largely unexplored. Here, we aim to examine the characteristics of gut fungi in pregnant women, and reveal the associations between gut mycobiome, host metabolome and pregnancy health. DESIGN: Based on a prospective birth cohort in central China (2017 to 2020): Tongji-Huaxi-Shuangliu Birth Cohort, we included 4800 participants who had available ITS2 sequencing data, dietary information and clinical records during their pregnancy. Additionally, we established a subcohort of 1059 participants, which included 514 women who gave birth to preterm, low birthweight or macrosomia infants, as well as 545 randomly selected controls. In this subcohort, a total of 750, 748 and 709 participants had ITS2 sequencing data, 16S sequencing data and serum metabolome data available, respectively, across all trimesters. RESULTS: The composition of gut fungi changes dramatically from early to late pregnancy, exhibiting a greater degree of variability and individuality compared with changes observed in gut bacteria. The multiomics data provide a landscape of the networks among gut mycobiome, biological functionality, serum metabolites and pregnancy health, pinpointing the link between Mucor and adverse pregnancy outcomes. The prepregnancy overweight status is a key factor influencing both gut mycobiome compositional alteration and the pattern of metabolic remodelling during pregnancy. CONCLUSION: This study provides a landscape of gut mycobiome dynamics during pregnancy and its relationship with host metabolism and pregnancy health, which lays the foundation of the future gut mycobiome investigation for healthy pregnancy.

3.
PLoS Biol ; 22(5): e3002636, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743770

RESUMEN

Periodic patterning requires coordinated cell-cell interactions at the tissue level. Turing showed, using mathematical modeling, how spatial patterns could arise from the reactions of a diffusive activator-inhibitor pair in an initially homogenous 2D field. Most activators and inhibitors studied in biological systems are proteins, and the roles of cell-cell interaction, ions, bioelectricity, etc. are only now being identified. Gap junctions (GJs) mediate direct exchanges of ions or small molecules between cells, enabling rapid long-distance communications in a cell collective. They are therefore good candidates for propagating nonprotein-based patterning signals that may act according to the Turing principles. Here, we explore the possible roles of GJs in Turing-type patterning using feather pattern formation as a model. We found 7 of the 12 investigated GJ isoforms are highly dynamically expressed in the developing chicken skin. In ovo functional perturbations of the GJ isoform, connexin 30, by siRNA and the dominant-negative mutant applied before placode development led to disrupted primary feather bud formation. Interestingly, inhibition of gap junctional intercellular communication (GJIC) in the ex vivo skin explant culture allowed the sequential emergence of new feather buds at specific spatial locations relative to the existing primary buds. The results suggest that GJIC may facilitate the propagation of long-distance inhibitory signals. Thus, inhibition of GJs may stimulate Turing-type periodic feather pattern formation during chick skin development, and the removal of GJ activity would enable the emergence of new feather buds if the local environment were competent and the threshold to form buds was reached. We further propose Turing-based computational simulations that can predict the sequential appearance of these ectopic buds. Our models demonstrate how a Turing activator-inhibitor system can continue to generate patterns in the competent morphogenetic field when the level of intercellular communication at the tissue scale is modulated.

4.
Front Pharmacol ; 15: 1390996, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38738175

RESUMEN

Warfarin is an anticoagulant that requires INR-based dosage adjustment. Ascorbic acid may impair warfarin effectiveness according to limited literature. We report a rare case of a 63-year-old woman with an aortic valve replacement history who developed warfarin resistance after taking ascorbic acid for anemia following breast cancer surgery. Despite increasing the warfarin dose from 6 mg to 10 mg daily, her INR remained below the therapeutic range. After ruling out other causes of warfarin resistance, we discontinued ascorbic acid and observed a rapid increase in INR to target values. The temporal relationship and the absence of other confounding factors confirmed the causality of ascorbic acid in this case. We recommend that patients concomitantly taking vitamin C and warfarin should monitor their INR values closely and discontinue ascorbic acid as soon as possible if they exhibit signs of warfarin resistance.

5.
ACS Appl Mater Interfaces ; 16(19): 24147-24161, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695686

RESUMEN

Benefiting from anionic and cationic redox reactions, Li-rich materials have been regarded as next-generation cathodes to overcome the bottleneck of energy density. However, they always suffer from cracking of polycrystalline (PC) secondary particles and lattice oxygen release, resulting in severe structural deterioration and capacity decay upon cycling. Single-crystal (SC) design has been proven as an effective strategy to relieve these issues in traditional Li-rich cathodes with PC morphology. Herein, we first reviewed the main synthesis routes of SC Li-rich materials including solid-state reaction, molten salt-assisted, and hydrothermal/solvothermal methods, in which the differences in grain morphology, electrochemical behaviors, and other properties induced by various routes were analyzed and discussed. Furthermore, the distinct characteristics were compared between SC and PC cathodes from the aspects of irreversible capacity, structural stability, capacity/voltage degradation, and gas release. Besides, recent advances in layered SC Li-rich oxide cathodes were summarized in detail, where the unique structural designs and modification strategies could greatly promote their structural/electrochemical stability. At last, challenges and perspectives for the emerging SC Li-rich cathodes were proposed, which provided an exceptional opportunity to achieve high-energy-density and high-stability Li-ion/metal batteries.

6.
J Asthma Allergy ; 17: 449-462, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770268

RESUMEN

Purpose: Little research has explored the proteomic characteristics of nasal lavage fluid from asthmatic patients. This study aims to investigate whether differentially expressed proteins (DEPs) in nasal lavage fluid can serve as a biomarker to differentiate asthma patients from healthy controls (HCs) and to discern between individuals with well controlled and poorly controlled asthma. Patients and Methods: We enrolled patients with allergic rhinitis (AR), asthma, or both conditions, and HCs in this study. We recorded patients' demographic and medical history data and administered asthma quality of life questionnaire (AQLQ) and asthma control questionnaire (ACQ). Nasal fluid samples were collected, followed by protein measurements, and proteomic analysis utilizing the data-independent acquisition (DIA) method. Results: Twenty-four with asthma, 27 with combined asthma+ AR, 25 with AR, and 12 HCs were enrolled. Four proteins, superoxide dismutase 2 (SOD2), serpin B7 (SERPINB7), kallikrein-13 (KLK13), and bleomycin hydrolase (BLMH) were significantly upregulated in nasal lavage fluid samples of asthma without AR, compared to HCs (Fold change ≥2.0, false-discovery rate [FDR] <0.05). Conversely, 56 proteins including secretoglobin family 2A member 1 (SCGB2A1) were significantly downregulated (fold change ≥2.0, FDR <0.05). Furthermore, 96.49% of DEPs including peptidase inhibitor 3 (PI3) and C-X-C motif chemokine 17 (CXCL17) were upregulated in poorly controlled asthma patients without AR relative those with well- or partly controlled asthma (fold change ≥1.5, FDR <0.05). Search tool for the retrieval of interacting genes/proteins (STRING) analysis showed that PI3, with 18 connections, may be pivotal in asthma control. Conclusion: The study revealed significant alteration in the nasal lavage proteome in asthma without AR patients. Moreover, our results indicated a potential association between the expression of proteome in the upper airway and the level of asthma control. Specifically, PI3 appears to be a key role in the regulation of asthma without AR.

7.
Lancet Reg Health West Pac ; 47: 101086, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38774424

RESUMEN

Background: A variety of symptoms, particularly cognitive, psychiatric and neurological symptoms, may persist for a long time among individuals recovering from COVID-19. However, the underlying mechanism of these brain abnormalities remains unclear. This study aimed to investigate the long-term neuroimaging effects of COVID-19 infection on brain functional activities using resting-state functional magnetic resonance imaging (rs-fMRI). Methods: Fifty-two survivors 27 months after infection (mild-moderate group: 25 participants, severe-critical: 27 participants), from our previous community participants, along with 35 healthy controls, were recruited to undergo fMRI scans and comprehensive cognitive function measurements. Participants were evaluated by subjective assessment of Cognitive Failures Questionnaire-14 (CFQ-14) and Fatigue Scale-14 (FS-14), and objective assessment of Montreal Cognitive Assessment (MoCA), N-back, and Simple Reaction Time (SRT). Each had rs-fMRI at 3T. Measures such as the amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), and regional homogeneity (ReHo) were calculated. Findings: Compared with healthy controls, survivors of mild-moderate acute symptoms group and severe-critical group had a significantly higher score of cognitive complains involving cognitive failure and mental fatigue. However, there was no difference of cognitive complaints between two groups of COVID-19 survivors. The performance of three groups was similar on the score of MoCA, N-back and SRT. The rs-fMRI results showed that COVID-19 survivors exhibited significantly increased ALFF values in the left putamen (PUT.L), right inferior temporal gyrus (ITG.R) and right pallidum (PAL.R), while decreased ALFF values were observed in the right superior parietal gyrus (SPG.R) and left superior temporal gyrus (STG.L). Additionally, decreased ReHo values in the right precentral gyrus (PreCG.R), left postcentral gyrus (PoCG.L), left calcarine fissure and surrounding cortex (CAL.L) and left superior temporal gyrus (STG.L). Furthermore, significant negative correlations between the ReHo values in the STG.L, and CFQ-14 and mental fatigue were found. Interpretation: This long-term study suggests that individuals recovering from COVID-19 continue to experience cognitive complaints, psychiatric and neurological symptoms, and brain functional alteration. The rs-fMRI results indicated that the changes in brain function in regions such as the putamen, temporal lobe, and superior parietal gyrus may contribute to cognitive complaints in individuals with long COVID even after 2-year infection. Funding: The National Programs for Brain Science and Brain-like Intelligence Technology of China, the National Natural Science Foundation of China, Natural Science Foundation of Beijing Municipality of China, and the National Key Research and Development Program of China.

8.
Nat Commun ; 15(1): 3725, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38697971

RESUMEN

Hematopoietic progenitor kinase 1 (HPK1) is a negative regulator of T-cell receptor signaling and as such is an attractive target for cancer immunotherapy. Although the role of the HPK1 kinase domain (KD) has been extensively characterized, the function of its citron homology domain (CHD) remains elusive. Through a combination of structural, biochemical, and mechanistic studies, we characterize the structure-function of CHD in relationship to KD. Crystallography and hydrogen-deuterium exchange mass spectrometry reveal that CHD adopts a seven-bladed ß-propellor fold that binds to KD. Mutagenesis associated with binding and functional studies show a direct correlation between domain-domain interaction and negative regulation of kinase activity. We further demonstrate that the CHD provides stability to HPK1 protein in cells as well as contributes to the docking of its substrate SLP76. Altogether, this study highlights the importance of the CHD in the direct and indirect regulation of HPK1 function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Serina-Treonina Quinasas , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/química , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/química , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Unión Proteica , Dominios Proteicos , Cristalografía por Rayos X , Células HEK293
10.
Pediatr Res ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714864

RESUMEN

BACKGROUND: As the relationship between attention deficit hyperactivity disorder (ADHD) and traumatic brain injury (TBI) is gaining increasing attention, the TBI risk in patients with ADHD, unaffected siblings of ADHD probands, and non-ADHD controls remains unclear. METHODS: Overall, 18,645 patients with ADHD, 18,880 unaffected siblings of ADHD probands, and 188,800 age-/sex-matched controls were followed up from enrollment to the end of 2011. The cases of TBI and TBI requiring hospitalization were identified during follow-up. RESULTS: Patients with ADHD (hazard ratio [HR]: 1.57) and unaffected siblings (HR: 1.20) had an increased risk of any TBI compared with non-ADHD controls. Surprisingly, the likelihood of developing TBI requiring hospitalization during follow-up was higher in the unaffected siblings group (HR: 1.21) than in the control group, whereas it was lower in the ADHD probands group (HR: 0.86). CONCLUSIONS: Patients with ADHD and unaffected siblings of ADHD probands were more likely to develop any TBI during follow-up than controls. Unaffected siblings of patients with ADHD exhibited the highest risk of subsequent TBI requiring hospitalization compared with patients with ADHD and healthy controls. Therefore, TBI risk in patients with ADHD and their unaffected siblings would require further investigation. IMPACT: ADHD diagnosis and ADHD trait are associated with risk of traumatic brain injury (TBI). Both patients with ADHD and their unaffected siblings were more likely to develop TBI during the follow-up compared with the control group. TBI requiring hospitalization occurred more in the sibling group than in the proband group. TBI risk should be closely monitored among unaffected siblings of patients with ADHD.

11.
Front Plant Sci ; 15: 1367299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716337

RESUMEN

Angelica dahurica is a kind of Chinese traditional herbs with economic and ornament value, widely distributed in China. Despite its significance, there have been limited comprehensive investigations on the genome of A. dahurica, particularly regarding mitochondrial genomes. To investigate the conversion between mitochondrial genome and chloroplast genome, a complete and circular mitochondrial genome was assembled using Oxford Nanopore Technologies (ONT) long reads. The mitochondrial genome of A. dahurica had a length of 228,315 base pairs (bp) with 45.06% GC content. The mitochondrial genome encodes 56 genes, including 34 protein-coding genes, 19 tRNA genes and 3 rRNA genes. Moreover, we discovered that 9 homologous large fragments between chloroplast genome and mitochondrial genome based on sequence similarity. This is the first report for A. dahurica mitochondrial genome, which could provide an insight for communication between plastid genome, and also give a reference genome for medicinal plants within the Angelica family.

12.
Hum Brain Mapp ; 45(7): e26689, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38703095

RESUMEN

Tau pathology and its spatial propagation in Alzheimer's disease (AD) play crucial roles in the neurodegenerative cascade leading to dementia. However, the underlying mechanisms linking tau spreading to glucose metabolism remain elusive. To address this, we aimed to examine the association between pathologic tau aggregation, functional connectivity, and cascading glucose metabolism and further explore the underlying interplay mechanisms. In this prospective cohort study, we enrolled 79 participants with 18F-Florzolotau positron emission tomography (PET), 18F-fluorodeoxyglucose PET, resting-state functional, and anatomical magnetic resonance imaging (MRI) images in the hospital-based Shanghai Memory Study. We employed generalized linear regression and correlation analyses to assess the associations between Florzolotau accumulation, functional connectivity, and glucose metabolism in whole-brain and network-specific manners. Causal mediation analysis was used to evaluate whether functional connectivity mediates the association between pathologic tau and cascading glucose metabolism. We examined 22 normal controls and 57 patients with AD. In the AD group, functional connectivity was associated with Florzolotau covariance (ß = .837, r = 0.472, p < .001) and glucose covariance (ß = 1.01, r = 0.499, p < .001). Brain regions with higher tau accumulation tend to be connected to other regions with high tau accumulation through functional connectivity or metabolic connectivity. Mediation analyses further suggest that functional connectivity partially modulates the influence of tau accumulation on downstream glucose metabolism (mediation proportion: 49.9%). Pathologic tau may affect functionally connected neurons directly, triggering downstream glucose metabolism changes. This study sheds light on the intricate relationship between tau pathology, functional connectivity, and downstream glucose metabolism, providing critical insights into AD pathophysiology and potential therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer , Fluorodesoxiglucosa F18 , Imagen por Resonancia Magnética , Red Nerviosa , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Masculino , Femenino , Anciano , Proteínas tau/metabolismo , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Glucosa/metabolismo , Conectoma , Estudios Prospectivos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/fisiopatología , Anciano de 80 o más Años
13.
Nat Commun ; 15(1): 4174, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755126

RESUMEN

The transition from natal downs for heat conservation to juvenile feathers for simple flight is a remarkable environmental adaptation process in avian evolution. However, the underlying epigenetic mechanism for this primary feather transition is mostly unknown. Here we conducted time-ordered gene co-expression network construction, epigenetic analysis, and functional perturbations in developing feather follicles to elucidate four downy-juvenile feather transition events. We report that extracellular matrix reorganization leads to peripheral pulp formation, which mediates epithelial-mesenchymal interactions for branching morphogenesis. α-SMA (ACTA2) compartmentalizes dermal papilla stem cells for feather renewal cycling. LEF1 works as a key hub of Wnt signaling to build rachis and converts radial downy to bilateral symmetry. Novel usage of scale keratins strengthens feather sheath with SOX14 as the epigenetic regulator. We show that this primary feather transition is largely conserved in chicken (precocial) and zebra finch (altricial) and discuss the possibility that this evolutionary adaptation process started in feathered dinosaurs.


Asunto(s)
Pollos , Plumas , Pinzones , Animales , Plumas/crecimiento & desarrollo , Plumas/metabolismo , Pollos/genética , Pinzones/genética , Regulación del Desarrollo de la Expresión Génica , Matriz Extracelular/metabolismo , Epigénesis Genética , Redes Reguladoras de Genes , Vía de Señalización Wnt , Queratinas/metabolismo , Queratinas/genética , Evolución Biológica , Morfogénesis/genética
14.
Fitoterapia ; 176: 106007, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38744384

RESUMEN

Three p-terphenyl metabolites (1-3), three indole-diterpenoids (4-6), an herbicide sesquiterpene (7), a flavonoid (8), and five other small molecules containing nitrogen (9-13) were isolated from the medicinal insect (Periplaneta americana)-derived endophytic Aspergillus taichungensis SMU01. Their chemical structures were elucidated on the basis of spectroscopic data and quantum chemical computational methods. Biological activity of these isolates in the differentiation of mouse CD4+ T cell subsets was evaluated. Importantly, metabolites 2 targeting JAK-STAT signaling pathway could hold potential benefits in maintaining peripheral immune homeostasis and alleviating the progression of autoimmune diseases.

15.
Langmuir ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748978

RESUMEN

Transition metal oxides are a potential anode material owing to their high theoretical capacity. Nonetheless, their large volume changes and low electrical conductivities lead to poor cycling performance and rate capabilities. In this article, an effective strategy is proposed and developed for preparing a ZnO/N-doped graphene composite (ZnNc/GO-5). The key point of this strategy is to use zinc tetra tert-butyl-naphthalocyanine (ZnNc) as a codoped source of N atoms and zinc ions, and graphene oxide (GO) which is combined with ZnNc by π-π deposition as a carbon matrix. After calcination, ZnO microcrystals coated with N-doped graphene are obtained. The unique features of the composite and synergistic effect between N-doped reduced graphene oxide and ZnO microcrystals enable good electrochemical performance by the composites when used in lithium-ion batteries. As an anode material, the as-synthesized ZnNc/GO-5 composite delivers a high first capacity of 1942.9 mAh g-1 and excellent cyclic stability of 861.4 mAh g-1 after 150 cycles at 100 mA g-1. This strategy may offer a new method of designing the anode materials of lithium-ion batteries and promote the practical use of organic molecules in next-generation lithium-ion batteries.

16.
Mol Imaging Biol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38641708

RESUMEN

BACKGROUND: Previous studies have initially reported accompanying elevated 2-deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) inflammatory activity in the remote area and its prognostic value after acute myocardial infarction (AMI). Non-invasive characterization of the accompanying inflammation in the remote myocardium may be of potency in guiding future targeted theranostics. [68Ga]Ga-Pentixafor targeting chemokine receptor 4 (CXCR4) on the surface of inflammatory cells is currently one of the promising inflammatory imaging agents. In this study, we sought to focus on the longitudinal evolution of [68Ga]Ga-Pentixafor activities in the remote myocardium following AMI and its association with cardiac function. METHODS: Twelve AMI rats and six Sham rats serially underwent [68Ga]Ga-Pentixafor imaging at pre-operation, and 5, 7, 14 days post-operation. Maximum and mean standard uptake value (SUV) and target-to-background ratio (TBR) were assessed to indicate the uptake intensity. Gated [18F]F-FDG imaging and immunofluorescent staining were performed to obtain cardiac function and responses of pro-inflammatory and reparative macrophages, respectively. RESULTS: The uptake of [68Ga]Ga-Pentixafor in the infarcted myocardium peaked at day 5 (all P = 0.003), retained at day 7 (all P = 0.011), and recovered at day 14 after AMI (P > 0.05), paralleling with the rise-fall pro-inflammatory M1 macrophages (P < 0.05). Correlated with the peak activity in the infarct territory, [68Ga]Ga-Pentixafor uptake in the remote myocardium on day 5 early after AMI significantly increased (AMI vs. Sham: SUVmean, SUVmax, and TBRmean: all P < 0.05), and strongly correlated with contemporaneous EDV and/or ESV (SUVmean and TBRmean: both P < 0.05). The transitory remote activity recovered as of day 7 post-AMI (AMI vs. Sham: P > 0.05). CONCLUSIONS: Corresponding with the peaked [68Ga]Ga-Pentixafor activity in the infarcted myocardium, the activity in the remote region elevated accordingly and led to contemporaneous left ventricular remodelling early after AMI. Further studies are warranted to clarify its clinical application potential.

18.
Transfusion ; 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644556

RESUMEN

BACKGROUND: Blood typing is essential for safe transfusions and is performed serologically or genetically. Genotyping predominantly focuses on coding regions, but non-coding variants may affect gene regulation, as demonstrated in the ABO, FY and XG systems. To uncover regulatory loci, we expanded a recently developed bioinformatics pipeline for discovery of non-coding variants by including additional epigenetic datasets. METHODS: Multiple datasets including ChIP-seq with erythroid transcription factors (TFs), histone modifications (H3K27ac, H3K4me1), and chromatin accessibility (ATAC-seq) were analyzed. Candidate regulatory regions were investigated for activity (luciferase assays) and TF binding (electrophoretic mobility shift assay, EMSA, and mass spectrometry, MS). RESULTS: In total, 814 potential regulatory sites in 47 blood-group-related genes were identified where one or more erythroid TFs bound. Enhancer candidates in CR1, EMP3, ABCB6, and ABCC4 indicated by ATAC-seq, histone markers, and co-occupancy of 4 TFs (GATA1/KLF1/RUNX1/NFE2) were investigated but only CR1 and ABCC4 showed increased transcription. Co-occupancy of GATA1 and KLF1 was observed in the KEL promoter, previously reported to contain GATA1 and Sp1 sites. TF binding energy scores decreased when three naturally occurring variants were introduced into GATA1 and KLF1 motifs. Two of three GATA1 sites and the KLF1 site were confirmed functionally. EMSA and MS demonstrated increased GATA1 and KLF1 binding to the wild-type compared to variant motifs. DISCUSSION: This combined bioinformatics and experimental approach revealed multiple candidate regulatory regions and predicted TF co-occupancy sites. The KEL promoter was characterized in detail, indicating that two adjacent GATA1 and KLF1 motifs are most crucial for transcription.

19.
Chemistry ; : e202400816, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38613472

RESUMEN

Near-Infrared-II (NIR-II) spans wavelengths between 1,000 to 1,700 nanometers, featuring deep tissue penetration and reduced tissue scattering and absorption characteristics, providing robust support for cancer treatment and tumor imaging research. This review explores the utilization of activatable NIR-II photodiagnosis and phototherapy based on tumor microenvironments (e. g., reactive oxygen species, pH, glutathione, hypoxia) and external stimulation (e. g., laser, ultrasound, photothermal) for precise tumor treatment and imaging. Special emphasis is placed on the advancements and advantages of activatable NIR-II nanomedicines in novel therapeutic modalities like photodynamic therapy, photothermal therapy, and photoacoustic imaging. This encompasses achieving deep tumor penetration, real-time monitoring of the treatment process, and obtaining high-resolution, high signal-to-noise ratio images even at low material concentrations. Lastly, from a clinical perspective, the challenges faced by activatable NIR-II phototherapy are discussed, alongside potential strategies to overcome these hurdles.

20.
Environ Pollut ; 350: 123948, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614423

RESUMEN

The aim of this study is to investigate the adverse effects of benzophenones (BPs) on the intestinal tract of mice and the potential mechanism. F1-generation ICR mice were exposed to BPs (benzophenone-1, benzophenone-2, and benzophenone-3) by breastfeeding from birth until weaning, and by drinking water after weaning until maturity. The offspring mice were executed on postnatal day 56, then their distal colons were sampled. AB-PAS staining, HE staining, immunofluorescence, Transmission Electron Microscope, immunohistochemistry, Western Blot and RT-qPCR were used to study the effects of BPs exposure on the colonic tissues of offspring mice. The results showed that colonic microvilli appeared significantly deficient in the high-dose group, and the expression of tight junction markers Zo-1 and Occludin was significantly down-regulated and the number of goblet cells and secretions were reduced in all dose groups, and the expression of secretory cell markers MUC2 and KI67 were decreased, as well as the expression of intestinal stem cell markers Lgr5 and Bmi1, suggesting that BPs exposure caused disruption of intestinal barrier and imbalance in the composition of the intestinal stem cell pool. Besides, the expression of cellular inflammatory factors such as macrophage marker F4/80 and tumor necrosis factor TNF-α was elevated in the colonic tissues of all dose groups, and the inflammatory infiltration was observed, which means the exposure of BPs caused inflammatory effects in the intestinal tract of F1-generation mice. In addition, the contents of Notch/Wnt signaling pathway-related genes, such as Dll-4, Notch1, Hes1, Ctnnb1and Sfrp2 were significantly decreased in each high-dose group (P < 0.05), suggesting that BPs may inhibit the regulation of Notch/Wnt signaling pathway. In conclusion, exposure to BPs was able to imbalance colonic homeostasis, disrupt the intestinal barrier, and trigger inflammation in the offspring mice, which might be realized through interfering with the Notch/Wnt signaling pathway.


Asunto(s)
Benzofenonas , Homeostasis , Inflamación , Ratones Endogámicos ICR , Animales , Ratones , Homeostasis/efectos de los fármacos , Benzofenonas/toxicidad , Inflamación/inducido químicamente , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Femenino , Masculino , Intestinos/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...