Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(15): e2318425121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557182

RESUMEN

Corrugated packaging for express grew by 90 times to 16.5 Mt y-1 in China, where 81% of recent global express delivery growth occurred. However, the environmental impacts of production, usage, disposal, and recycling of corrugated boxes under the entire supply chain remain unclear. Here, we estimate the magnitudes, drivers, and mitigation potentials of cradle-to-grave life-cycle carbon footprint (CF) and three colors of water footprints (WFs) for corrugated cardboard packaging in China. Over 2007 to 2021, CF, blue and gray WFs per unit package decreased by 45%, 60%, and 84%, respectively, while green WF increased by 23% with growing imports of virgin pulp and China's waste ban. National total CF and WFs were 21 to 102 folded with the scale effects. Only a combination of the supply chain reconstruction, lighter single-piece packaging, and increased recycling rate can possibly reduce the environmental footprints by 24 to 44% by 2035.


Asunto(s)
Carbono , Agua , Huella de Carbono , Reciclaje , China
2.
Sci Total Environ ; 923: 171332, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447716

RESUMEN

The synergy between bacteria and fungi is a key determinant of soil health and have a positive effect on plant development under drought conditions, with the potentially enhancing the sustainability of amending soil with natural materials. However, identifying how soil amendments influence plant growth is often difficult due to the complexity of microorganisms and their links with different soil amendment types and environmental factors. To address this, we conducted a field experiment to examine the impact of soil amendments (biochar, Bacillus mucilaginosus, Bacillus subtilis and super absorbent polymer) on plant growth. We also assessed variations in microbial community, links between fungi and bacteria, and soil available nutrients, while exploring how the synergistic effects between fungus and bacteria influenced the response of soil amendments to plant growth. This study revealed that soil amendments reduced soil bacterial diversity but increased the proportion of the family Enterobacteriaceae, Nitrosomonadaceae, and also increased soil fungal diversity and the proportion of the sum of the family Lasiosphaeriaceae, Chaetomiaceae, Pleosporaceae. Changes in soil microbial communities lead to increase the complexity of microbial co-occurrence networks. Furthermore, this heightened network complexity enhanced the synergy of soil bacteria and fungi, supporting bacterial functions related to soil nutrient cycling, such as metabolic functions and genetic, environmental, and cellular processes. Hence, the BC and BS had 3.0-fold and 0.5-fold greater root length densities than CK and apple tree shoot growth were increased by 62.14 %,50.53 % relative to CK, respectively. In sum, our results suggest that the synergistic effect of bacteria and fungi impacted apple tree growth indirectly by modulating soil nutrient cycling. These findings offer a new strategy for enhancing the quality of arable land in arid and semi-arid regions.


Asunto(s)
Microbiota , Suelo , Bacterias/metabolismo , Nutrientes , Hongos/metabolismo , Microbiología del Suelo
3.
J Environ Manage ; 342: 118347, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37315464

RESUMEN

Increasing crop yields to ensure an adequate food supply under water and land scarcity is dependent on intensive agricultural inputs (such as fertilizers, pesticides, agri-films, or energy) which consume water resources and generate water pollution. However, the burden shifting of water quantity and quality stress from producers to importer and consumers through agricultural input production, trade, and consumption have been largely overlooked. Here, taking maize in China as the study case, we mapped step-by-step indirect water footprint (IWF) of maize production, virtual water (VW) flows related to inputs driven by maize consumption, and the resulting burden shifting of water quantity and quality. Bottom-up WF accounting approach was applied. The maize consumption was intercepted into two stages: the crop production stage (CPS) from raw materials to the farm, and the crop trade stage (CTS) from farm to fork. Results show that the national average blue and grey IWF of maize production was 3.91 and 26.86 m3/t, respectively. In the CPS, the input-related VW flowed from the west and east coast to the north. In the CTS, the VW flows from the north to the south. Blue and grey VW flows in CTS caused by secondary flows of VW in CPS accounted for 48% and 18% of the total flows, respectively. In total VW flows along the maize supply chain, 63% of blue VW and 71% of grey VW net exports occurred in the north of severe water scarcity and water pollution levels. The analysis highlights the impact of the crop supply chain on water quantity and water quality in the consumption of agricultural inputs, the importance of step-by-step supply chain analysis for regional crop water conservation management, and the urgent need for integrated management of agricultural and industrial water resources.


Asunto(s)
Abastecimiento de Agua , Zea mays , Recursos Hídricos , Agricultura/métodos , China , Productos Agrícolas
4.
Environ Pollut ; 330: 121776, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37149248

RESUMEN

The increasing pathogenic bacteria threat in irrigation water has become a worldwide concern, prompting efforts to discover a new cost-effective method for pathogenic bacteria eradication, different than those currently in use. In this study, a novel copper-loaded porous ceramic emitter (CPCE) was developed via molded sintering method to kill bacteria from irrigation water. The material performance and hydraulic properties of CPCE are discussed herein, and the antibacterial effect against Escherichia coli (E. coli) and Staphylococcusaureus (S. aureus) was evaluated. The incremental copper content in CPCE improved flexural strength and pore size, which was conducive to enhancing CPCE discharge. Moreover, antibacterial tests showed that CPCE displayed efficient antimicrobial activity, killing 99.99% and more than 70% of S. aureus and E. coli, respectively. The results reveal that CPCE, with both irrigation and sterilization functions, can provide a low-cost and effective solution for bacterial removal from irrigation water.


Asunto(s)
Cobre , Escherichia coli , Cobre/farmacología , Staphylococcus aureus , Porosidad , Antibacterianos , Cerámica , Agua , Pruebas de Sensibilidad Microbiana
5.
Water Res ; 235: 119894, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37001229

RESUMEN

Water resource and carbon emission involved in grain production in mainland China are redistributed among provinces as the grain was transported in recent years. This study first calculated the water consumption and carbon emission during the growth of grain crops based on the water-carbon footprint theory, and then used the social-equity method to calculate the inter-regional grain virtual water and virtual carbon flow. Finally, the regional and national trends in water saving and carbon emission reduction were calculated based on the spatial and temporal differences in grain planting among provinces. In terms of virtual water-carbon, from 2000 to 2017, the amount of the inter-provincial grain virtual water flow increased from 717.4 × 108 m3 to 1472.6 × 108 m3. Heilongjiang and Guangdong are the provinces with the largest amount of grain virtual water outflow (670.9 × 108 m3) and inflow (402.8 × 108 m3) in 2017, respectively. And the total inter-provincial grain virtual carbon flow increased from 2362.7 × 104 t CO2e to 12,680.6 × 104 t CO2e. Grain transport leads to water saving and carbon emission reduction, the amount of water saving increased from 25.6 × 108 m3 to 77.0 × 108 m3 and the carbon emission reduction increased from 2.4 × 104 t CO2e to 847.4 × 104 t CO2e from 2000 to 2017. Based on research results and from the perspective of socio-hydrology combined with water saving and carbon emission reduction, the regions could optimize the integration of water saving, carbon emission reduction, and sustainable development based on coordinating the grain planting structure according to their own climatic condition, soil and water resource condition, and socioeconomic condition.


Asunto(s)
Carbono , Agua , Recursos Hídricos , Abastecimiento de Agua , China , Dióxido de Carbono
7.
Sci Total Environ ; 858(Pt 1): 159757, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349629

RESUMEN

Understanding how ecosystem services (ESs) interact with urbanization is crucial for formulating sustainable development policies. Although previous literature has paid attention to this topic, information on complex spatiotemporal interactions between ESs and urbanization remains inadequate, especially in the Yellow River Basin (YRB), a typical basin that will usher in rapid progress of ecological protection and urbanization. In this study, we constructed a framework for evaluating ecosystem service values (ESV) and urbanization by synthesizing multi-source data in the YRB from 1980 to 2018, and further revealing the interactive coercing mechanisms of ESV and urbanization. We found that the YRB has experienced rapid urbanization, with an increasing growth trend for all urbanization indicators, especially from 2000 onwards. ESV had a significant negative correlation with urbanization, showing a decreasing trend with urbanization growth before 2000, but reversed this trend after 2000 as ecological restoration projects offset the adverse effects of urbanization on ESV. Furthermore, while significant negative spatial correlations occurred between ESV and urbanization, these correlations diminished over time. The results also revealed differences in the spatial correlations between global and local scales, with three types of spatial correlations at the local scale: High-Low (high ESV and low urbanization), Low-High (low ESV and high urbanization), and Low-Low (low ESV and low urbanization). Our results contribute to understanding the interactive coercing relationship between ESV and urbanization in the YRB, particularly at the local scale, and insights into coordinating future ecological protection and urban development.


Asunto(s)
Ecosistema , Urbanización , Ríos , Conservación de los Recursos Naturales , China
8.
Plants (Basel) ; 11(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36235520

RESUMEN

The influence of different mulching measures on soil moisture, soil temperature, and crop growth was investigated during the jujube growing season in rain-fed jujube orchards using micro-plot experiments. The mulching treatments included clean tillage (CT, control treatment), jujube branches mulching (JBM), and white clover planting (WCP). The results revealed that: (1) The average soil moisture content of JBM was greater than that of CT by 3.76% and 2.34%, respectively, during the 2013 and 2014 jujube growth periods, and its soil water deficit was minimal in each soil layer from 0 to 70 cm. WCP had the greatest soil water deficit. The average soil moisture content of the 0−70 cm soil layer in WCP was 3.88% and 5.55% lower than that in CT during the 2013 and 2014 jujube growth seasons, respectively (p < 0.05). (2) JBM had the highest annual average soil moisture content in each soil layer from 0 to 70 cm, followed by CT, while WCP had the lowest. White clover and jujube competed for water in the 20−40 cm soil layer, and JBM had the lowest variation in soil moisture. (3) Mulching with jujube branches and planting white clover could both control the temperature of the 0−25 cm soil layer and narrow the daily temperature range, with JBM being the least affected by air temperature. (4) Jujube's leaf area index and stem diameter increase in JBM were both significantly greater than in CT and WCP. In conclusion, using pruned jujube branches as surface mulch is appropriate for rain-fed jujube orchards because it can preserve soil moisture, regulate soil temperature, and promote jujube growth.

9.
J Environ Manage ; 322: 116129, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36070651

RESUMEN

Afforestation plays a crucial role in the remission of water and soil erosion, adsorption of heavy metals, and protection of soil microbial community structure for mining areas. However, soil drought, the variability of precipitation, and low rainwater use efficiency severely limit the early survival rate of trees. A new small-scale system of rainwater harvesting combined with irrigation (RWHI) for afforestation in mining areas was established, which consisted of a rainwater catching board, storage tanks, and ceramic emitters. A daily water balance model under variable water supply was presented and experimentally verified to confirm the optimum catchment area, the storage capacity of tanks, and the rated discharge of ceramic emitters. Taking the Wuda mining area in Wuhai, China, as a case study, three representative years, including dry, normal, and wet years were selected by analysing local rainfall features. The results showed that the soil water content in the root zone maintained a suitable range (between field capacity and wilting coefficient) using the RWHI system. With the aim of the maximum system operating reliability for various weather conditions and tree species, it was recommended that the rated discharge of the ceramic emitter of 6 ml h-1, storage tanks of 25 L, the catchment area of 1 m2, and filling water schedule of twice a year were employed. A generalised equation for the estimation of the filling water amount was given. The vegetation coverage of the mine was significantly improved, and the survival rate of trees (Murraya paniculate) exceeded 90% using the RWHI system. It was indicated that the RWHI system has a broad application prospect in the afforestation of the mining areas.


Asunto(s)
Lluvia , Abastecimiento de Agua , Reproducibilidad de los Resultados , Suelo , Agua
10.
Water Res ; 221: 118803, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35809385

RESUMEN

Crop production is the biggest water user and key contributor to anthropogenic greenhouse gas emissions. Increasing crop yields to ensure adequate food supply under water and land scarcity is excessively dependents on intensive agricultural inputs (such as fertilizers, pesticides, agri-films, or energy), resulting in unintended environmental consequences. Supply chains bringing environmental-intensive inputs from their place of production to the croplands. However, most food-related environmental assessments ignore the environmental burden of agricultural input production, trade, and consumption. Here, we estimate spatially-detailed water (WF) and carbon footprints (CF) of wheat, maize, and rice production in China with extended system boundary from upstream raw material mining to the field. The agricultural inputs account for up to 24% and 89% of a crop's WF and CF, respectively, at the provincial level. The total local generated WF in Chinese northern provinces and CF in Shanxi and Inner Mongolia provinces for producing crops and agricultural inputs transgresses the corresponding downscaled blue water and carbon planetary boundaries. The study broadens the scope of traditional environmental impact assessments in agricultural production and sheds light on the significances to manage the linkages between the crop production and the agricultural inputs' upstream supply chains towards more efficient water use and less greenhouse gas emissions in food system.


Asunto(s)
Huella de Carbono , Gases de Efecto Invernadero , Agricultura/métodos , China , Producción de Cultivos , Fertilizantes , Agua
11.
PeerJ ; 10: e13736, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35855431

RESUMEN

Changes in soil moisture and soil temperature result from the combined effects of several environmental factors. Scientific determination of the response characteristics of soil moisture and soil temperature to environmental factors is critical for adjusting the sloping land use structure and improving the ecological environment in China's loess hilly region. Soybean sloping fields, maize terraced fields, jujube orchards, and grasslands in the loess hilly region were selected as the research areas. The change in characteristics of soil moisture and soil temperature, as well as their interactions and statistical relationships with meteorological factors, were analyzed using continuously measured soil moisture, soil temperature, and meteorological factors. The results revealed that air temperature and humidity were the main controlling factors affecting soil moisture changes in the 0-60 cm soil layer of soybean sloping fields and grasslands in the normal precipitation year (2014) and the dry year (2015). Humidity and wind speed were the main meteorological factors affecting soil moisture changes in the maize terraced field. Air temperature had a significant negative effect on soil moisture in the jujube orchard. Soil moisture and soil temperature were all negatively correlated under the four sloping land use types. In normal precipitation years, atmospheric humidity had the greatest direct and comprehensive effect on soil moisture in soybean sloping fields, maize terraced fields, and grasslands; soil temperature had a relatively large impact on soil moisture in jujube orchards. The direct and comprehensive effects of soil temperature on soil moisture under all sloping land use types were the largest and most negative in the dry year. Air temperature had a high correlation with soil temperature in the 0-60 cm soil layer under the four sloping land use types, and the grey relational grade decreased as the soil layer deepened. The coefficient of determination between the 0-20 cm soil temperature and air temperature in the maize terraced field was low, indicating a weak response to air temperature. The above findings can serve as a scientific foundation for optimizing sloping land use structures and maximizing the efficient and sustainable utilization of sloping land resources in China's loess hilly region.


Asunto(s)
Suelo , Agua , Suelo/química , Temperatura , Agua/análisis , Ambiente , China
12.
Sci Total Environ ; 847: 157625, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35901876

RESUMEN

Interbasin water diversion projects and virtual water transfers embedded in exchanged goods and services are two effective solutions to water deficits. However, the associated real responses in water quantity and quality scarcities and the economic efficiencies remain unclear. Here, we tracked the blue water scarcities, water pollution levels, and economic value added through interbasin physical and virtual water diversions across nine river basins by sector in China from 2007 to 2015. The total national blue and grey water footprints were 365 Gm3yr-1 and 592 Gm3 yr-1, in which the Yangtze River basin accounts the most for 32 % and 37 %, respectively, by 2015. The physical water diversions increased by 52 % to 16.9 Gm3yr-1. The blue virtual water transfers increased by 24 % to 176 Gm3yr-1, whereas the grey virtual water transfers decreased by 10 % to 266 Gm3yr-1. Agriculture related interbasin virtual water flows showed opposite directions to those driven by the industry sector. Although with uneven value added while growing, limited effects mitigated water quantity and quality stresses, especially in the drier Yellow, Northwest, and Hai River basins where the capital is located. Half of the basins had low and declining synergy scores, suggesting an urgent need to achieve synergies between resources, the environment, and the economy across basins.


Asunto(s)
Inseguridad Hídrica , Agua , Agricultura , China , Ríos , Abastecimiento de Agua
13.
PLoS One ; 17(1): e0262445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35030231

RESUMEN

Various land use types have been implemented by the government in the loess hilly region of China to facilitate sustainable land use. Understanding the variability in soil moisture and temperature under various sloping land use types can aid the ecological restoration and sustainable utilization of sloping land resources. The objective of this study was to use approximate entropy (ApEn) to reveal the variations in soil moisture and temperature under different land use types, because ApEn only requires a short data series to obtain robust estimates, with a strong anti-interference ability. An experiment was conducted with four typical land use scenarios (i.e., soybean sloping field, maize terraced field, jujube orchard, and grassland) over two consecutive plant growing seasons (2014 and 2015), and the time series of soil moisture and temperature within different soil depth layers of each land use type were measured in both seasons. The results showed that the changing amplitude, degree of variation, and active layer of soil moisture in the 0-160 cm soil depth layer, as well as the changing amplitude and degree of variation of soil temperature in the 0-100 cm soil layer increased in the jujube orchard over the two growing seasons. The changing amplitude, degree of variation, and active layer of soil moisture all decreased in the maize terraced field, as did the changing amplitude and degree of variation of soil temperature. The ApEn of the soil moisture series was the lowest in the 0-160 cm soil layer in the maize terraced field, and the ApEn of the soil temperature series was the highest in the 0-100 cm layer in the jujube orchard in the two growing seasons. Finally, the jujube orchard soil moisture and temperature change process were more variable, whereas the changes in the maize terraced field were more stable, with a stable soil moisture and temperature. This work highlights the usefulness of ApEn for revealing soil moisture and temperature changes and to guide the management and development of sloping fields.


Asunto(s)
Agricultura/métodos , Suelo/química , Desarrollo Sostenible/tendencias , Carbono/análisis , China , Entropía , Desarrollo Sostenible/economía , Temperatura , Agua/análisis
14.
Sci Total Environ ; 820: 153149, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35038506

RESUMEN

Developing an ultra-thin polyamide selective layer with sufficient mechanical robustness on a highly porous ceramic substrate is challenging for removing heavy metal ions from wastewater. We synthesized a reliable ceramic-polyamide membrane by assembling nanocomposite interlayers of alumina and carbon black on the kaolin substrate. The surface morphology, pore size distribution, and roughness of ceramic substrates were improved by introducing the nanocomposite interlayer. The corresponding optimized water flux, Pb(II), and Cd(II) removal efficiency are 2.75 L m-2 h-1, 98.44%, and 97.51%, respectively, which are better than those of the polyamide films constructed directly on the ceramic substrate. This facile structure provides more active sites for forming ultrathin polyamide layers with satisfactory mechanical robustness. This paper provides a new perspective for fabricating efficient heavy metal ions filters.


Asunto(s)
Nanocompuestos , Purificación del Agua , Cadmio , Caolín , Plomo
15.
J Hazard Mater ; 421: 126721, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34358976

RESUMEN

It is of great significance to develop a new gravity-driven filter to remove water pollutants, but it is still challenging. Here, a novel and simple strategy is demonstrated to manufacture fly ash (FA) ceramic foams showing a three-dimensional interconnected porous structure, with multiwalled carbon nanotubes (MWCNTs) implanted by combining carbamate grafting and polydimethylsiloxane coating. The polydimethylsiloxane formed a physical coating on the carbamate group, generating an effective thermal insulating layer on the outer side of the entire MWCNT. The FA foam, which shows a sufficient adsorption capacity for Pb(II) (51.67 ± 1.17 mg g-1) and Cd(II) (30.12 ± 0.37 mg g-1) at pH = 5, T = 25 °C, has a 96.33%, 95.12%, 89.50% removal efficiency for Cd(II), Pb(II), and particulate pollutants, and exhibits excellent recycling performance. This paper provides new opportunities to fabricate gravity-driven filters with low energy consumption for wastewater treatment.

16.
Plants (Basel) ; 12(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36616150

RESUMEN

Soil water is a major barrier to ecological restoration and sustainable land use in China's Loess Hilly Region. For the restoration of local vegetation and the optimal use of the region's land resources, both theoretically and practically, it is essential to comprehend the soil water regimes under various land use types. The soil water content in the 0−160 cm soil profile of slope cropland, terraced field, jujube orchard, and grassland was continuously measured using EC-5 soil moisture sensors during the growing season (May−October) in the Yuanzegou catchment in the Loess Hilly Region to characterize the changes in soil water in these four typical land use types. The results showed that in both years of normal precipitation and drought, land use patterns varied in seasonal variability, water storage characteristics, and vertical distribution of soil water. In the dry year of 2015, the terraced field effectively held water. During the growing season, the 0−60 cm soil layer's average soil water content was 2.6%, 4.2%, and 1.8% higher than the slope cropland, jujube orchard, and grassland, respectively (p < 0.05), and the 0−160 cm soil layer's water storage was 43.90, 32.08, and 18.69 mm higher than the slope cropland, jujube orchard, and grassland, respectively. The average soil water content of the 0−60 cm soil layer in the jujube orchard was 2.9%, 3.8%, and 4.5% lower than that of slope cropland, terraced field, and grassland, respectively, during the normal precipitation year (2014) (p < 0.05). Only 35.0% of the total soil water storage was effectively stored in the 0−160 cm soil layer of the jujube orchard during the drought year. There was a significant difference in the grey relational grade between the soil water in the top layer (0−20 cm) and the soil water in the middle layer (20−100 cm) under different land use types, with the terraced field having the highest similarity degree of soil water variation trend, followed by grassland, slope cropland, and jujube orchard. Slope croplands in the study region may be converted into terraced fields to enhance the effective use of rainfall resources and encourage the expansion of ecological agriculture. Proper water management practices must be employed to reduce jujube tree water consumption and other wasteful water usage in order to guarantee the jujube orchard's ability to expand sustainably. This would address the issue of the acute water deficit in the rain-fed jujube orchards in the Loess Hilly Region.

17.
Sci Total Environ ; 780: 146584, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33765467

RESUMEN

Besides posing soaring pressure on water and land resources, the ever-intensifying agricultural production redistributes these pressures trough increasingly intensive trade. Environmental consequences are complicated and unprecedented, and postulate thorough scrutiny. Little attention is paid to developing regions which are small nodes in terms of trade volume in global trade however of visible gaps in water and land productivities. Five Central Asian nations (CANs) have close trade activities with their neighbour China, but their agricultural production efficiency is strikingly low and the ecological environment is severely degraded. Here we evaluate, among CANs and China, the water and land footprints, virtual water and land trades, as well as potentials in enhancing water and land efficiency related to sixteen primary crop products, four primary animal products, and twelve derivative products production and trade over the period 2000-2014. We find that the blue water footprint and land footprint per unit product in CANs were up to 61- and 17-times higher than in China. Through enhancing water and land efficiency without further intervention in water and land endowments, the scenario for CANs shows an additional food supply for feeding 387 million people or half the starving population in the world.

18.
J Hazard Mater ; 400: 123183, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32580095

RESUMEN

A single-matrix hydrophobic ceramic membrane (HCM) was prepared via gel-casting and membrane grafting. Fly ash cenospheres and 1H,1H,2H,2H-perfluorooctyl trichlorosilane were used as the single-matrix material. The results showed that when the sintering temperature was 1300℃, the porosity was 75.56 %, and flexural strength was 11.1 MPa; this means that the material meets the requirements for mechanical properties. After grafting 1H,1H,2H,2H-perfluorooctane trichlorosilane, the Si-CH3 peak increased and the Si-OH peak was weaker. Also, the contact angle of the droplet increased from 56° to 126°, and this indicates that the droplet was successfully chemically adsorbed to the surface of the ceramic membrane. The results of computational fluid dynamics simulation show that a gaussian spherical wall greatly improved the permeation flux of foamed ceramic membranes, and the permeation flux of the microchannel increased by 26.5 %∼76.2 % at the same transmembrane pressure. Pure water permeation flux and heavy metal adsorption experiments shows excellent high permeation flux and satisfactory heavy metal adsorption performance of HCM. From the perspective of membrane cost, HCM is suitable to be promoted. In summary, HCM has the potential for commercial application.

19.
Sci Total Environ ; 732: 139251, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32442770

RESUMEN

China's food security is facing serious threats because the virtual water triggered by grain trade flows from the water-scarce north region to the water-rich south region in recent years. Thus, quantitatively evaluating grain virtual water flow is increasingly important. We established a multi-objective linear optimization model based on analyzing drivers of grain trade by the entropy method, and the two drivers of transport cost and grain consumption structure between provinces were analyzed. The results show that the virtual water flow of inter-provincial grain trade of China was 98.38 Gm3 in 2015, accounting for 15% of the total water consumption of grain production. The impact weights of grain transportation cost and difference of grain consumption structure between provinces on virtual water flow were 0.665 and 0.335, respectively. Although the production and consumption of grain in northern region were almost the same, the virtual water imbedded in grain trade still flowed from the north to the south under the influence of grain imports from abroad and grain consumption structure. Compared to previous methods, the model added the principle of the entropy method into linear programming analysis. This innovative model not only quantitatively evaluated the driving forces of grain trade through the weight coefficient, but also established a universal model of quantifying grain virtual water flow. Moreover, we reduced data assumptions, such as not considering actual grain imports and transport modes of grain, which improves the credibility of quantitative results. The model quantified virtual water from the perspective of driving impacts and precluded the limitations of trade data. The model can be used in other countries and regions, where trade data is difficult to obtain, to calculate trade patterns. The results are useful for decision makers to implement virtual water strategies, mitigate national water scarcity, and facilitate sustainable development of grain production.

20.
Sci Total Environ ; 723: 137739, 2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32203796

RESUMEN

The number of apple (Malus pumila Mill.) orchards has increased substantially in hilly regions of the Loess Plateau of China, as a significant element of the large-scale 'Grain for Green' ecological rehabilitation program that aims to conserve soil and water while improving the regions economic prospects. However, the long-term effects of the orchard expansion and the adaptive responses of apple trees to drought are not known. Thus, using a space-for-time substitution approach, we investigated plant-available water and fine-root distribution in the 0-8 m soil profile in apple orchards of various ages in a dry year (2015, 392 mm rainfall) and the following year with normal precipitation (2016, 500 mm rainfall). We found that plant-available water gradually decreased with stand age in the dry year, but increased in the normal year, especially in the 0-2 m soil layer. Fine root (<2 mm diameter) distribution and biomass increased with stand age and decreased with increasing soil depth in all treatment plots, predominantly in the 0-2 m layer. In all treatment plots, most of the soil layers in the deep soil (>2 m) had soil moisture storage deficit. In the dry year (2015), the apple trees increased both the average depth (D50 and D95 values) and biomass of their fine-root systems in response to water stress, relative to the normal year (2016). Thus, the apple trees extracted water primarily from the shallow (<2 m) layers in the normal year, but from deeper soil layers in the dry year, to sustain growth. The results of this study will help to guide land and agricultural water management in rainfed apple orchards in hilly regions of the Loess Plateau and similar dryland regions.


Asunto(s)
Malus , China , Sequías , Suelo , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...