Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Water Res ; 256: 121575, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636121

RESUMEN

According to stoichiometric homeostasis theory, eutrophication is expected to increase the dominance of submerged macrophytes with low homeostatic regulation coefficients (H) relative to those with high H values, ultimately reducing macrophyte community stability. However, empirical evidence supporting this hypothesis is limited. In this study, we conducted a three-year tracking survey (seven sampling events) at 81 locations across three regions of Erhai Lake. We assessed the H values of submerged macrophyte species, revealing significant H values for phosphorus (P) and strong associations of HP values (range: 1.58-2.94) with species and community stability. Moreover, in plots simultaneously containing the dominant high-HP species, Potamogeton maackianus, and its low-HP counterpart, Ceratophyllum demersum, we explored the relationships among eutrophication, interspecific interaction shifts, and community dynamics. As the environmental P concentration increased, the dominance of P. maackianus decreased, while that of C. demersum increased. This shift coincided with reductions in community HP and stability. Our study underpins the effectiveness of H values for forecasting interspecific interactions among submerged macrophytes, thereby clarifying how eutrophication contributes to the decline in stability of the submerged macrophyte community.


Asunto(s)
Eutrofización , Homeostasis , Lagos , Fósforo , China , Ecosistema , Plantas/metabolismo
2.
Nat Commun ; 15(1): 3403, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649683

RESUMEN

The corpus callosum, historically considered primarily for homotopic connections, supports many heterotopic connections, indicating complex interhemispheric connectivity. Understanding this complexity is crucial yet challenging due to diverse cell-specific wiring patterns. Here, we utilized public AAV bulk tracing and single-neuron tracing data to delineate the anatomical connection patterns of mouse brains and conducted wide-field calcium imaging to assess functional connectivity across various brain states in male mice. The single-neuron data uncovered complex and dense interconnected patterns, particularly for interhemispheric-heterotopic connections. We proposed a metric "heterogeneity" to quantify the complexity of the connection patterns. Computational modeling of these patterns suggested that the heterogeneity of upstream projections impacted downstream homotopic functional connectivity. Furthermore, higher heterogeneity observed in interhemispheric-heterotopic projections would cause lower strength but higher stability in functional connectivity than their intrahemispheric counterparts. These findings were corroborated by our wide-field functional imaging data, underscoring the important role of heterotopic-projection heterogeneity in interhemispheric communication.


Asunto(s)
Cuerpo Calloso , Neuronas , Animales , Cuerpo Calloso/fisiología , Masculino , Ratones , Neuronas/fisiología , Vías Nerviosas/fisiología , Conectoma , Encéfalo/fisiología , Simulación por Computador , Modelos Neurológicos , Red Nerviosa/fisiología , Calcio/metabolismo
3.
Foods ; 13(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38540873

RESUMEN

In our previous study, two peptides with favorable anti-inflammatory effects, Asp-Gln-Thr-Phe (DQTF) and Gly-Tyr-Thr-Arg (GYTR), were screened from Ruditapes philippinarum using an in vitro-in silico strategy. The present study aims to investigate the ameliorative effect of Ruditapes philippinarum peptides (RPPs) on acute inflammation and clarify the potential mechanism through in vitro and in vivo experiments. The anti-inflammatory effects of DQTF and GYTR were verified with a lipopolysaccharide (LPS)-induced RAW264.7 cell acute inflammation model and the anti-inflammatory effect of the enzymatic hydrolysates of Ruditapes philippinarum was explored in vivo using an LPS-induced acute inflammatory injury model in mice. The results show that DQTF and GYTR improved the morphology of LPS-injured cells and decreased the concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in LPS-induced cells. Moreover, the antioxidant enzyme activity in cells was markedly increased with DQTF and GYTR. The enzymatic hydrolysates of Ruditapes philippinarum were obtained with hydrolysis using pepsin-chymotrypsin-trypsin (PeCTHC) and pepsin-trypsin (PeTHC), respectively. PeCTHC and PeTHC significantly reduced pro-inflammatory cytokines and nitric oxide (NO) in the serum. Additionally, the blood indices and levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and malondialdehyde (MDA) in the livers of mice were markedly improved with RPPs administration. In conclusion, RPPs have preventive and protective effects on acute inflammation, with significant prospects for development in the field of functional foods.

4.
Environ Sci Pollut Res Int ; 31(17): 24724-24744, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503955

RESUMEN

Clay minerals are abundant on Earth and have been crucial to the advancement of human civilization. The ability of clay minerals to absorb chemicals is frequently utilized to remove hazardous compounds from aquatic environments. Moreover, clay-based adsorbent products are both environmentally acceptable and affordable. This study provides an overview of advances in clay minerals in the field of groundwater remediation and related predictions. The existing literature was examined using data and information aggregation approaches. Keyword clustering analysis of the relevant literature revealed that clay minerals are associated with groundwater utilization and soil pollution remediation. Principal component analysis was used to assess the relationships among clay mineral modification methods, pollutant properties, and the Langmuir adsorption capacity (Qmax). The results demonstrated that pollutant properties affect the Qmax of pollutants adsorbed by clay minerals. Systematic cluster analysis was utilized to classify the collected data and investigate the relationships. The pollution adsorption mechanism of the unique structure of clay minerals was investigated based on the characterization results. Modified clay minerals exhibited changes in surface functional groups, internal structure, and pHpzc. This review provides a summary of recent clay-based materials and their applications in groundwater remediation, as well as discussions of their challenges and future prospects.


Asunto(s)
Contaminantes Ambientales , Agua Subterránea , Humanos , Arcilla/química , Minerales/química , Suelo/química , Adsorción
5.
Environ Pollut ; 347: 123711, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447654

RESUMEN

Nano-scale Mn oxides can act as effective stabilizers for Tl in soil and sediments. Nevertheless, the comprehensive analysis of the capacity of MnO2 to immobilize Tl in such porous media has not been systematically explored. Therefore, this study investigates the impact of γ-MnO2, a model functional nanomaterial for remediation, on the mobility of Tl in a water-saturated quartz sand-packed column. The mechanisms involved are further elucidated based on the adsorption and aggregation kinetics of γ-MnO2. The results indicate that higher ionic strength (IS) and the presence of ion Ca(II) promote the aggregation of γ-MnO2, resulting from the reduced electrostatic repulsion between particles. Conversely, an increase in pH inhibits aggregation due to enhanced interaction energy. γ-MnO2 significantly influences Tl retention and mobility, with a substantial fraction of γ-MnO2-bound Tl transported through the column. This might be attributed to the high affinity of γ-MnO2 for Tl through ion exchange reactions and precipitation at the surface of γ-MnO2. The mobility of Tl in the sand column is influenced by the γ-MnO2 colloids, exhibiting either inhibition or promotion depending on the pH, IS, and cation type of the solution. In solutions with higher IS and Ca(II), the mobility of Tl decreases as γ-MnO2 colloids tend to aggregate, strain, and block, facilitating colloidal Tl retention in porous media. Although higher pH reduces the mobility of individual Tl, it promotes the mobility of γ-MnO2 colloids, facilitating a substantial fraction of colloidal-form Tl. Consequently, the optimal conditions for stabilizing Tl by γ-MnO2 involve either high IS and low pH or the presence of competitive cations (e.g., Ca(II)). These findings provide new insights into Tl immobilization using MnO2- and Mn oxide-based functional materials, offering potential applications in the remediation of Tl contamination in soil and groundwater.


Asunto(s)
Nanopartículas , Agua , Óxidos , Arena , Talio , Porosidad , Compuestos de Manganeso , Coloides , Suelo
6.
Front Oncol ; 14: 1259335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322412

RESUMEN

Bronchogenic cysts are uncommon congenital malformations of the respiratory system. These cysts can be categorized as intrapulmonary, mediastinal, or ectopic. Ectopic bronchogenic cysts, which lack distinctive clinical and imaging features, are particularly challenging to diagnose. This study presents a 48-year-old woman having a small intestinal bronchogenic cyst. She was repeatedly misdiagnosed as having an ovarian chocolate cyst or a cystic mass of bladder origin three years ago. However, no cyst was found during the operation. Half a year prior to presenting at our hospital, the patient developed frequent urination, prompting her to seek further treatment. We eventually discovered a cyst in the small intestine. The histological evaluation of the specimen showed a bronchogenic cyst. Small intestine bronchogenic cysts are extremely rare and easily misdiagnosed. It should be considered as one of the differential diagnoses of pelvic cysts. Particularly, when intraoperative exploration of the pelvic cavity fails to detect any cysts, consideration should be given to the possibility of small intestine bronchogenic cysts.

7.
Immunology ; 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38402904

RESUMEN

Pancreatic cancer (PC) is a highly malignant tumour of the digestive system with poor therapeutic response and low survival rates. Immunotherapy has rapidly developed in recent years and has achieved significant outcomes in numerous malignant neoplasms. However, responses to immunotherapy in PC are rare, and the immunosuppressive and desmoplastic tumour microenvironment (TME) significantly hinders their efficacy in PC. Tumour-associated neutrophils (TANs) play a crucial role in the PC microenvironment and exert a profound influence on PC immunotherapy by establishing a robust stromal shelter and restraining immune cells to assist PC cells in immune escape, which may subvert the current status of PC immunotherapy. The present review aims to offer a comprehensive summary of the latest progress in understanding the involvement of TANs in PC desmoplastic and immunosuppressive functions and to emphasise the potential therapeutic implications of focusing on TANs in the immunotherapy of this deleterious disease. Finally, we provide an outlook for the future use of TANs in PC immunotherapy.

8.
Int J Biol Macromol ; 260(Pt 2): 129357, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38216011

RESUMEN

Osteoporosis is a prevalent systemic skeletal disorder, particularly affecting postmenopausal women, primarily due to excessive production and activation of osteoclasts. However, the current anti-osteoporotic drugs utilized in clinical practice may lead to certain side effects. Therefore, it is necessary to further unravel the potential mechanisms regulating the osteoclast differentiation and to identify novel targets for osteoporosis treatment. This study revealed the most significant decline in VSIG4 expression among the VSIG family members. VSIG4 overexpression significantly inhibited RANKL-induced osteoclastogenesis and bone resorption function. Mechanistically, both western blot and immunofluorescence assay results demonstrated that VSIG4 overexpression attenuated the expression of osteoclast marker genes and dampened the activation of MAPK and NF-κB signaling pathways. Furthermore, VSIG4 overexpression could inhibit the generation of reactive oxygen species (ROS) and stimulate the expression of Nrf2 along with its downstream antioxidant enzymes via interaction with Keap1. Notably, a potent Nrf2 inhibitor, ML385, could reverse the inhibitory effect of VSIG4 on osteoclast differentiation. In line with these findings, VSIG4 overexpression also mitigated bone loss induced by OVX and attenuated the activation of osteoclasts in vivo. In conclusion, our results suggest that VSIG4 holds promise as a novel target for addressing postmenopausal osteoporosis. This is achieved by suppressing osteoclast formation via enhancing Nrf2-dependent antioxidant response against reactive oxygen species production.


Asunto(s)
Osteogénesis , Osteoporosis , Femenino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Osteoclastos , FN-kappa B/metabolismo , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Diferenciación Celular , Receptores de Complemento/metabolismo , Receptores de Complemento/uso terapéutico
9.
Sci Rep ; 13(1): 21928, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081888

RESUMEN

Checkpoint kinase 2 (CHEK2) plays a crucial role in responding to DNA damage and is linked to diverse cancer types. However, its significance in the prediction of prognosis and impacts on the immune status of clear cell renal cell carcinoma (ccRCC) remains unclear. This study aimed to identify the role of CHEK2 in prognosis and immune microenvironment of ccRCC. We analyzed transcriptome and clinicopathological data from the cancer genome atlas (TCGA) database and conducted functional enrichment analysis to explore molecular mechanisms. The relationship between CHEK2 and immune infiltration was evaluated, and drug sensitivity analysis was performed using the CellMiner database. The results showed that CHEK2 was an independent predictor of ccRCC prognosis and was closely associated with immune-related processes. Additionally, high expression of CHEK2 was linked to resistance to certain targeted drugs. These findings suggest that CHEK2 could serve as a biomarker for ccRCC, providing insights into tumor immune microenvironment alterations and immunotherapeutic response. Further investigation is needed to fully understand the potential of CHEK2 as a prognostic predictor and therapeutic target for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Quinasa de Punto de Control 2/genética , Pronóstico , Neoplasias Renales/genética , Microambiente Tumoral/genética
10.
Front Oncol ; 13: 1211103, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965453

RESUMEN

Background: Despite numerous treatments available, clear cell renal cell carcinoma (ccRCC) remains a deadly and invasive cancer. Anoikis-related genes (ARGs) are essential regulators of tumor metastasis and development. However, the potential roles of ARGs in ccRCC remain unclear. Methods: Based on the TCGA-KIRC cohort and GeneCards database, we identified differentially expressed ARGs in ccRCC. Then a 4 ARGs risk model was created by Cox regression and LASSO. The Kaplan-Meier and receiver operating characteristic (ROC) curves were utilized to verify the predictive efficacy of the prognostic signature. Subsequently, the possible molecular mechanism of ARGs was investigated by functional enrichment analysis. To assess the immune infiltration, immune checkpoint genes, and immune function in various risk groups, single sample gene set enrichment (ssGSEA) algorithm was employed. Furthermore, the low-risk and high-risk groups were compared in terms of tumor mutation burden (TMB). Ultimately, we analyzed the protein expression of these four ARGs utilizing the western blot test. Results: Four genes were utilized to create a risk signature that may predict prognosis, enabling the classification of KIRC patients into groups with low or high risk. The reliability of the signature was examined utilizing survival analysis and ROC analysis. According to the multivariate Cox regression result, the risk score was a reliable independent prognostic predictor for KIRC patients. The novel risk model could differentiate between KIRC patients with various clinical outcomes and represent KIRC's specific immune status. An analysis of the correlation of TMB and risk score indicated a positive correlation between them, with high TMB being potentially linked to worse outcomes. Conclusion: Based on our findings, the prognostic signature of ARGs may be employed as an independent prognostic factor for ccRCC patients. It may introduce alternative perspectives on prognosis evaluation and serve as a prominent reference for personalized and precise therapy in KIRC.

11.
J Contam Hydrol ; 259: 104254, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37826885

RESUMEN

Mining activities have long-term impacts on the groundwater of surrounding areas and deserve in-depth analysis and study. Herein, the geochemical mechanisms of acid mine drainage (AMD)-affected groundwaters were examined, and groundwater quality was assessed through water quality indices. 15 water samples from 7 domestic and 4 groundwater monitoring wells were tested for physical and chemical parameters in 2022, and multivariate statistical analysis was carried out with monitoring data from 21 domestic wells in 2010. The groundwater chemical composition varied from a predominantly Ca-HCO3 type in 2010 to a Ca-SO4 type in 2022. The isotopic values of δ18O and δD indicate that groundwater has not been significantly affected by evaporation. Changes in groundwater sulfate and total dissolved solids (TDS) levels over the twelve-year period confirmed the AMD infiltration impact on groundwater quality. The groundwater chemical properties changed more slowly than those of surface waters affected by AMD based on a cumulative increase in sulfate concentration of 29.94 mg/L. Changes in groundwater quality were investigated, namely, the spatiotemporal distribution of potentially toxic elements (PTEs), including Fe, Mn, Cd, Pb, and As. Mn concentrations in upstream groundwater areas near the mine decreased by 61.8% between 2010 and 2022. Conversely, groundwater in midstream areas had Mn concentrations of 2.25 mg/L and arsenic concentrations of 11.8 µg/L, both exceeding the WHO, 2022 standard. According to multivariate statistical analysis, Mn, Cd, and Pb originated from polymetallic minerals, whereas As was likely derived from the reduction of Fe/Mn hydroxyl oxides. AMD remediation improved contaminated upstream groundwater quality over 12 years, with a 36.8% improvement in WQI values. PTE distribution determined water quality changes; therefore, PTE contamination should be treated in mid- and downstream regions while contaminated groundwater should be treated upstream.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Cadmio/análisis , Plomo/análisis , Agua Subterránea/química , Sulfatos , China
12.
Sci Total Environ ; 904: 166305, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586541

RESUMEN

As antimony (Sb) has been increasingly used in manufacturing industries (e.g., alloy, polymer and electronics industries), Sb contamination in the soil environment becomes widely reported and has drawn growing attention due to the toxicity of Sb to living organisms. Whether soil-dwelling organisms can tolerate Sb toxicity and maintain their ecological functions remains poorly understood. Using a cosmopolitan, ecologically important earthworm species (Eisenia fetida) as an ideal model organism, we examine the effects of Sb on the physiological, molecular and behavioural responses of earthworms to different levels of Sb contamination in soil (0, 10, 50, 100, 250 and 500 mg/kg). We found that earthworms could tolerate heavy Sb contamination (100 mg/kg) by boosting their antioxidant defence (POD and GST) and immune systems (ACP) so that their body weight and survival rate were sustained (c.f. control). However, these systems were compromised under extreme Sb contamination (500 mg/kg), leading to mortality. As such, earthworms exhibited avoidance behaviour to escape from the Sb-contaminated soil, implying the loss of their ecological contributions to the environment (e.g., increase in soil aeration and maintenance of soil structure). By measuring various types of biomarkers along a concentration gradient, this study provides a mechanistic understanding of how earthworms resist or succumb to Sb toxicity. Since extreme Sb contamination in soil (>100 mg/kg) is rarely found in nature, we are optimistic that the health and performance of earthworms are not influenced by Sb in most circumstances, but regular monitoring of Sb in soil is recommended to ensure the integrity and functioning of soil environment. Further studies are recommended to evaluate the long-term impact of Sb in the soil ecosystem through bioaccumulation and trophic transfer among soil-dwelling organisms.


Asunto(s)
Oligoquetos , Contaminantes del Suelo , Animales , Suelo/química , Oligoquetos/fisiología , Antimonio/toxicidad , Antimonio/análisis , Ecosistema , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
13.
Water Res ; 243: 120353, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482001

RESUMEN

The optimization of membrane bioreactors (MBRs) involves a critical challenge in structural design for mitigation of membrane fouling. To address this issue, a three-dimensional computational fluid dynamics (CFD) model was utilized in this study to simulate the hydrodynamic characteristics of a flat sheet (FS) MBR. The optimization of the membrane module configuration and operating conditions was performed by investigating key parameters that altered the shear stress and liquid velocity. The mixed liquor suspended solids (MLSS) concentration was found to increase the shear stress, leading to a more uniform distribution of shear stress. By optimizing the appropriate bubble diameter to 5 mm, the shear stress on the membrane surface was optimized with relatively uniform distribution. Additionally, extending the side baffle length dramatically improved the uniformity of the shear stress distribution on each membrane. A novel in-situ aeration method was also discovered to promote turbulent kinetic energy by 200 times compared with traditional aeration modes, leading to a more uniform bubble streamline. As a result, the novel in-situ aeration method demonstrated superior membrane antifouling potential in the MBR. This work provides a new approach for the structural design and optimization of MBRs. The innovative combination of the CFD model, optimization techniques, and novel in-situ aeration method has provided a substantial contribution to the advancement of membrane separation technology in wastewater treatment.


Asunto(s)
Hidrodinámica , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Membranas Artificiales , Reactores Biológicos , Estrés Mecánico
14.
ACS Appl Mater Interfaces ; 15(30): 35927-35938, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37471051

RESUMEN

Lung cancer is the major cause of cancer death worldwide. Immune checkpoint inhibitors (ICIs) of PD-1/PD-L1 have improved the survival rate in some patients with lung cancer. However, the efficacy of ICIs is limited by the inhibitory tumor immune microenvironment. Herein, we designed porphyrin cholesterol conjugates (TPPC) for synergistic photodynamic therapy (PDT)-immunotherapy for lung cancer. Porphyrin derivatives with great reactive oxygen species (ROS) production efficiency have been applied as photosensitizers in clinics, and cholesterol is one of the main components of the cell membrane. Porphyrin cholesterol conjugates could assemble into nanoparticles (NPs) in the absence of surfactants or amphiphilic polymers. On the other hand, TPPC NP-mediated PDT could accumulate at the tumor site and induce immunogenic cell death to stimulate and recruit antigen-presenting cells to mature and activate T cells, rendering cancer cells more sensitive to ICIs. Importantly, the combination strategy reshapes the tumor immune microenvironment to enhance the antitumor immune response and significantly suppresses the tumor growth and eliminates metastasis. This study offers theoretical guidance for the combination of PDT and ICIs as a potential therapeutic option in lung cancer.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Porfirinas , Humanos , Porfirinas/farmacología , Porfirinas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Inmunoterapia , Colesterol , Línea Celular Tumoral , Nanopartículas/uso terapéutico , Microambiente Tumoral
15.
J Mater Chem B ; 11(29): 6853-6858, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37381767

RESUMEN

Amino acids are one kind of basic life unit in biological systems. Modification with amino acids may bring interesting properties to the principal molecules. In this work, BDP was modified with L-aspartic acid (Asp) and D-Asp to obtain BDP-LAsp and BDP-DAsp, respectively. The as-synthesized BDPs can self-assemble into uniform nanoparticles (NPs) due to the hydrophilicity of Asp. We found that BDP-LAsp NPs possessed higher photodynamic therapeutic efficacy than BDP-DAsp NPs in fighting against cancer cells and bacteria. This provides a simple design strategy for the modification of photosensitizers in the biomedical field.


Asunto(s)
Boro , Nanopartículas , Boro/química , Aminoácidos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Nanopartículas/química
16.
Sci Total Environ ; 882: 163624, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37087000

RESUMEN

Water exchange unevenness (WEU) is defined as the coefficient of variation in water exchange intensity over time. Although its influence on aquatic plant characteristics has been recently investigated, there is limited understanding regarding the effects of this hydrodynamic change on submerged vegetation. This study investigated the impacts of WEU on the species dominance and community composition of submerged macrophytes in three bays with different WEU conditions in Erhai Lake, China. Subsequently, a laboratory experiment was conducted to elucidate the mechanisms underlying these effects. The field investigation showed that the dominance values of submerged macrophytes were influenced by WEU. As WEU decreased, the average dominance value decreased for Vallisneria natans (by 34.54 %), Myriophyllum spicatum (16.82 %), and Hydrilla verticillata (12.84 %); showed no significant change for Potamogeton lucens; and increased for Potamogeton maackianus (14.22 %) and Ceratophyllum demersum (17.52 %). The laboratory experiment showed that lower WEU markedly inhibited the growth of V. natans, slightly inhibited that of M. spicatum, and stimulated that of P. maackianus, consistent with the field observations. The inhibitory effect was attributed to a reduced concentration of carbon dioxide in the water; adaptive strategies, i.e., plant height, biomass allocation, and root traits, were more effective for M. spicatum than for V. natans. The stimulated growth of P. maackianus was attributed to increased dissolved oxygen concentration, which promoted root growth and nutrient uptake. Our results indicate that WEU has significant effects on the growth and community characteristics of submerged macrophytes.


Asunto(s)
Hydrocharitaceae , Potamogetonaceae , Lagos , Agua , Biomasa , Plantas , China
17.
IEEE Trans Med Imaging ; 42(6): 1809-1821, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022247

RESUMEN

Whole-slide image (WSI) classification is fundamental to computational pathology, which is challenging in extra-high resolution, expensive manual annotation, data heterogeneity, etc. Multiple instance learning (MIL) provides a promising way towards WSI classification, which nevertheless suffers from the memory bottleneck issue inherently, due to the gigapixel high resolution. To avoid this issue, the overwhelming majority of existing approaches have to decouple the feature encoder and the MIL aggregator in MIL networks, which may largely degrade the performance. Towards this end, this paper presents a Bayesian Collaborative Learning (BCL) framework to address the memory bottleneck issue with WSI classification. Our basic idea is to introduce an auxiliary patch classifier to interact with the target MIL classifier to be learned, so that the feature encoder and the MIL aggregator in the MIL classifier can be learned collaboratively while preventing the memory bottleneck issue. Such a collaborative learning procedure is formulated under a unified Bayesian probabilistic framework and a principled Expectation-Maximization algorithm is developed to infer the optimal model parameters iteratively. As an implementation of the E-step, an effective quality-aware pseudo labeling strategy is also suggested. The proposed BCL is extensively evaluated on three publicly available WSI datasets, i.e., CAMELYON16, TCGA-NSCLC and TCGA-RCC, achieving an AUC of 95.6%, 96.0% and 97.5% respectively, which consistently outperforms all the methods compared. Comprehensive analysis and discussion will also be presented for in-depth understanding of the method. To promote future work, our source code is released at: https://github.com/Zero-We/BCL.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Prácticas Interdisciplinarias , Neoplasias Pulmonares , Humanos , Teorema de Bayes , Algoritmos
18.
Biomater Sci ; 11(8): 2870-2876, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36876488

RESUMEN

Enhancing the interactions between photosensitizers and bacteria is key to developing effective photodynamic antibacterial agents. However, the influence of different structures on the therapeutic effects has not been systematically investigated. Herein, 4 BODIPYs with distinct functional groups, including the phenylboronic acid (PBA) group and pyridine (Py) cations, were designed to explore their photodynamic antibacterial activities. The BODIPY with the PBA group (IBDPPe-PBA) exhibits potent activity against planktonic Staphylococcus aureus (S. aureus) upon illumination, while the BODIPY with Py cations (IBDPPy-Ph) or both the PBA group and Py cations (IBDPPy-PBA) can significantly minimize the growth of both S. aureus and Escherichia coli (E. coli). In particular, IBDPPy-Ph can not only eliminate the mature S. aureus biofilm and E. coli biofilm in vitro, but also promote the healing of the infected wound. Our work provides an alternative for reasonable design of photodynamic antibacterial materials.


Asunto(s)
Fármacos Fotosensibilizantes , Infecciones Estafilocócicas , Humanos , Fármacos Fotosensibilizantes/química , Staphylococcus aureus , Escherichia coli , Antibacterianos/química , Cationes/química
19.
Environ Geochem Health ; 45(3): 771-785, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35312930

RESUMEN

Combining environmental isotope analysis with principal component analysis can be an effective method to discriminate the inflows and sources of contamination in mining-affected watersheds. This paper presents a field-scale study conducted at an acid mine drainage (AMD)-contaminated site adjacent to a pyrite mine in South China. Samples of surface water and groundwater were collected to investigate transport in the vadose zone using stable isotopes of oxygen (δ18O) and hydrogen (δD) as environmental tracers. Principal component analysis of hydrogeochemical data was used to identify the probable sources of heavy metals in the AMD. The heavy metal pollution index (HPI) was applied to evaluate the pollution status of heavy metals in the groundwater. The groundwater associated with the Datai reservoir was recharged by atmospheric precipitation and surface water. On the side near the AMD pond, the groundwater was significantly affected by the soluble metals produced by pyrite oxidation. The concentrations of some metals (Al, Mn, and Pb) in all of the samples exceed the desirable limits prescribed by the World Health Organization (Guidelines for drinking-water quality, 4th edn. World Health Organization, Geneva, 2011). Among them, the concentration of Al is more than 30,000 times higher than the desirable limits prescribed by the World Health Organization (2011), and the concentration of Mn is more than 3000 times higher. The HPI values based on these heavy metal concentrations were found to be 10-1000 times higher than the critical pollution index value of 100. These findings provide a reference and guidance for research on the migration and evolution of heavy metals in vadose zone water in AMD-contaminated areas.


Asunto(s)
Agua Subterránea , Metales Pesados , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Calidad del Agua , Metales Pesados/análisis , Isótopos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...