Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 81(6): 1309-1318.e6, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33484638

RESUMEN

DNA damage impedes replication fork progression and threatens genome stability. Upon encounter with most DNA adducts, the replicative CMG helicase (CDC45-MCM2-7-GINS) stalls or uncouples from the point of synthesis, yet eventually resumes replication. However, little is known about the effect on replication of single-strand breaks or "nicks," which are abundant in mammalian cells. Using Xenopus egg extracts, we reveal that CMG collision with a nick in the leading strand template generates a blunt-ended double-strand break (DSB). Moreover, CMG, which encircles the leading strand template, "runs off" the end of the DSB. In contrast, CMG collision with a lagging strand nick generates a broken end with a single-stranded overhang. In this setting, CMG translocates along double-stranded DNA beyond the break and is then ubiquitylated and removed from chromatin by the same pathway used during replication termination. Our results show that nicks are uniquely dangerous DNA lesions that invariably cause replisome disassembly, and they suggest that CMG cannot be stored on dsDNA while cells resolve replication stress.


Asunto(s)
Cromatina , Roturas del ADN de Cadena Simple , ADN Helicasas , Replicación del ADN , Ubiquitinación , Proteínas de Xenopus , Animales , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , Células Sf9 , Spodoptera , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
2.
Trends Cell Biol ; 31(2): 75-85, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33317933

RESUMEN

In preparation for cell division, the genome must be copied with high fidelity. However, replisomes often encounter obstacles, including bulky DNA lesions caused by reactive metabolites and chemotherapeutics, as well as stable nucleoprotein complexes. Here, we discuss recent advances in our understanding of TRAIP, a replisome-associated E3 ubiquitin ligase that is mutated in microcephalic primordial dwarfism. In interphase, TRAIP helps replisomes overcome DNA interstrand crosslinks and DNA-protein crosslinks, whereas in mitosis it triggers disassembly of all replisomes that remain on chromatin. We describe a model to explain how TRAIP performs these disparate functions and how they help maintain genome integrity.


Asunto(s)
ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , Mitosis , Ubiquitina-Proteína Ligasas/metabolismo , Animales , ADN Helicasas/química , Humanos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Xenopus laevis
3.
Mol Cell ; 79(2): 221-233.e5, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32603710

RESUMEN

Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9's activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Proteínas de Unión al ADN/metabolismo , Genoma Humano , Proteínas del Grupo de Alta Movilidad/metabolismo , Factores de Elongación Transcripcional/metabolismo , Animales , Proteínas Asociadas a CRISPR/metabolismo , Línea Celular , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Epigénesis Genética , Edición Génica , Técnicas de Silenciamiento del Gen , Humanos , Nucleosomas/metabolismo , Xenopus laevis
4.
Nature ; 567(7747): 267-272, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30842657

RESUMEN

Cells often use multiple pathways to repair the same DNA lesion, and the choice of pathway has substantial implications for the fidelity of genome maintenance. DNA interstrand crosslinks covalently link the two strands of DNA, and thereby block replication and transcription; the cytotoxicity of these crosslinks is exploited for chemotherapy. In Xenopus egg extracts, the collision of replication forks with interstrand crosslinks initiates two distinct repair pathways. NEIL3 glycosylase can cleave the crosslink1; however, if this fails, Fanconi anaemia proteins incise the phosphodiester backbone that surrounds the interstrand crosslink, generating a double-strand-break intermediate that is repaired by homologous recombination2. It is not known how the simpler NEIL3 pathway is prioritized over the Fanconi anaemia pathway, which can cause genomic rearrangements. Here we show that the E3 ubiquitin ligase TRAIP is required for both pathways. When two replisomes converge at an interstrand crosslink, TRAIP ubiquitylates the replicative DNA helicase CMG (the complex of CDC45, MCM2-7 and GINS). Short ubiquitin chains recruit NEIL3 through direct binding, whereas longer chains are required for the unloading of CMG by the p97 ATPase, which enables the Fanconi anaemia pathway. Thus, TRAIP controls the choice between the two known pathways of replication-coupled interstrand-crosslink repair. These results, together with our other recent findings3,4 establish TRAIP as a master regulator of CMG unloading and the response of the replisome to obstacles.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/metabolismo , Reparación del ADN , ADN/química , ADN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , ADN/biosíntesis , Replicación del ADN , Femenino , Humanos , Componente 7 del Complejo de Mantenimiento de Minicromosoma/metabolismo , N-Glicosil Hidrolasas/metabolismo , Unión Proteica , Ubiquitina/metabolismo , Ubiquitinación , Xenopus
5.
Mol Cell ; 73(5): 915-929.e6, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849395

RESUMEN

DNA replication errors generate complex chromosomal rearrangements and thereby contribute to tumorigenesis and other human diseases. One mechanism that triggers these errors is mitotic entry before the completion of DNA replication. To address how mitosis might affect DNA replication, we used Xenopus egg extracts. When mitotic CDK (Cyclin B1-CDK1) is used to drive interphase egg extracts into a mitotic state, the replicative CMG (CDC45/MCM2-7/GINS) helicase undergoes ubiquitylation on its MCM7 subunit, dependent on the E3 ubiquitin ligase TRAIP. Whether replisomes have stalled or undergone termination, CMG ubiquitylation is followed by its extraction from chromatin by the CDC48/p97 ATPase. TRAIP-dependent CMG unloading during mitosis is also seen in C. elegans early embryos. At stalled forks, CMG removal results in fork breakage and end joining events involving deletions and templated insertions. Our results identify a mitotic pathway of global replisome disassembly that can trigger replication fork collapse and DNA rearrangements.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Daño del ADN , Replicación del ADN , ADN/biosíntesis , Reordenamiento Génico , Mitosis , Proteínas Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Ciclina B1/genética , ADN/genética , Reparación del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo , ADN Polimerasa theta
6.
Mol Cell ; 73(3): 574-588.e7, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30595436

RESUMEN

DNA-protein crosslinks (DPCs) are bulky lesions that interfere with DNA metabolism and therefore threaten genomic integrity. Recent studies implicate the metalloprotease SPRTN in S phase removal of DPCs, but how SPRTN is targeted to DPCs during DNA replication is unknown. Using Xenopus egg extracts that recapitulate replication-coupled DPC proteolysis, we show that DPCs can be degraded by SPRTN or the proteasome, which act as independent DPC proteases. Proteasome recruitment requires DPC polyubiquitylation, which is partially dependent on the ubiquitin ligase activity of TRAIP. In contrast, SPRTN-mediated DPC degradation does not require DPC polyubiquitylation but instead depends on nascent strand extension to within a few nucleotides of the lesion, implying that polymerase stalling at the DPC activates SPRTN on both leading and lagging strand templates. Our results demonstrate that SPRTN and proteasome activities are coupled to DNA replication by distinct mechanisms that promote replication across immovable protein barriers.


Asunto(s)
Reparación del ADN , Replicación del ADN , ADN/biosíntesis , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , ADN/química , ADN/genética , Femenino , Masculino , Conformación de Ácido Nucleico , Complejo de la Endopetidasa Proteasomal/genética , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Células Sf9 , Relación Estructura-Actividad , Ubiquitinación , Proteínas de Xenopus/genética , Xenopus laevis/genética
7.
Cell Rep ; 23(12): 3419-3428, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29924986

RESUMEN

DNA interstrand crosslinks (ICLs) are extremely cytotoxic, but the mechanism of their repair remains incompletely understood. Using Xenopus egg extracts, we previously showed that repair of a cisplatin ICL is triggered when two replication forks converge on the lesion. After CDC45/MCM2-7/GINS (CMG) ubiquitylation and unloading by the p97 segregase, FANCI-FANCD2 promotes DNA incisions by XPF-ERCC1, leading to ICL unhooking. Here, we report that, during this cell-free ICL repair reaction, one of the two converged forks undergoes reversal. Fork reversal fails when CMG unloading is inhibited, but it does not require FANCI-FANCD2. After one fork has undergone reversal, the opposing fork that still abuts the ICL undergoes incisions. Our data show that replication fork reversal at an ICL requires replisome disassembly. We present a revised model of ICL repair that involves a reversed fork intermediate.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , ADN/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Extractos Celulares , Proteínas de Unión al ADN/metabolismo , Óvulo/metabolismo
8.
Annu Rev Biochem ; 86: 439-460, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28141967

RESUMEN

Telomerase is the essential reverse transcriptase required for linear chromosome maintenance in most eukaryotes. Telomerase supplements the tandem array of simple-sequence repeats at chromosome ends to compensate for the DNA erosion inherent in genome replication. The template for telomerase reverse transcriptase is within the RNA subunit of the ribonucleoprotein complex, which in cells contains additional telomerase holoenzyme proteins that assemble the active ribonucleoprotein and promote its function at telomeres. Telomerase is distinct among polymerases in its reiterative reuse of an internal template. The template is precisely defined, processively copied, and regenerated by release of single-stranded product DNA. New specificities of nucleic acid handling that underlie the catalytic cycle of repeat synthesis derive from both active site specialization and new motif elaborations in protein and RNA subunits. Studies of telomerase provide unique insights into cellular requirements for genome stability, tissue renewal, and tumorigenesis as well as new perspectives on dynamic ribonucleoprotein machines.


Asunto(s)
Replicación del ADN , ADN de Cadena Simple/metabolismo , ARN/metabolismo , Ribonucleoproteínas/metabolismo , Telomerasa/metabolismo , Telómero/enzimología , Animales , Dominio Catalítico , ADN de Cadena Simple/genética , Regulación de la Expresión Génica , Humanos , Repeticiones de Microsatélite , Conformación de Ácido Nucleico , Oxytricha/genética , Oxytricha/metabolismo , ARN/genética , Ribonucleoproteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Telómero/química , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...