Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2308990, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297408

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic and lethal disease. Gasdermins are primarily associated with necrosis via membrane permeabilization and pyroptosis, a lytic pro-inflammatory type of cell death. In this study, GSDMC upregulation during PDAC progression is reported. GSDMC directly induces genes related to stemness, EMT, and immune evasion. Targeting Gsdmc in murine PDAC models reprograms the immunosuppressive tumor microenvironment, rescuing the recruitment of anti-tumor immune cells through CXCL9. This not only results in diminished tumor initiation, growth and metastasis, but also enhances the response to KRASG12D inhibition and PD-1 checkpoint blockade, respectively. Mechanistically, it is discovered that ADAM17 cleaves GSDMC, releasing nuclear fragments binding to promoter regions of stemness, metastasis, and immune evasion-related genes. Pharmacological inhibition of GSDMC cleavage or prevention of its nuclear translocation is equally effective in suppressing GSDMC's downstream targets and inhibiting PDAC progression. The findings establish GSDMC as a potential therapeutic target for enhancing treatment response in this deadly disease.

2.
NPJ Biofilms Microbiomes ; 10(1): 87, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289404

RESUMEN

Bacteria can be dead, alive, or exhibit slowed or suspended life forms, making bacterial death difficult to establish. Here, agar-plating, microscopic-counting, SYTO9/propidium-iodide staining, MTT-conversion, and bioluminescence-imaging were used to determine bacterial death upon exposure to different conditions. Rank correlations between pairs of assay outcomes were low, indicating different assays measure different aspects of bacterial death. Principal-component analysis yielded two principal components, named "reproductive-ability" (PC1) and "metabolic-activity" (PC2). Plotting of these principal components in two-dimensional space revealed a dead region, with borders defined by the PC1 and PC2 values. Sensu stricto implies an unpractical reality that all assays determining PC1 and PC2 must be carried out in order to establish bacterial death. Considering this unpracticality, it is suggested that at least one assay determining reproductive activity (PC1) and one assay determining metabolic activity (PC2) should be used to establish bacterial death. Minimally, researchers should specifically describe which dimension of bacterial death is assessed, when addressing bacterial death.


Asunto(s)
Viabilidad Microbiana , Bacterias/clasificación , Bacterias/genética , Análisis de Componente Principal , Mediciones Luminiscentes/métodos
4.
J Colloid Interface Sci ; 672: 224-235, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838630

RESUMEN

Hybrid-nanozymes are promising in various applications, but comprehensive comparison of hybrid-nanozymes composed of single-atoms or nanoparticles on the same support has never been made. Here, manganese-oxide nanosheets were loaded with Pt-single-atoms or differently-sized nanoparticles and their oxidase- and-peroxidase activities compared. High-resolution Transmission-Electron-Microscopy and corresponding Fast Fourier Transform imaging showed that Pt-nanoparticles (1.5 nm diameter) had no clear (111) crystal-planes, while larger nanoparticles had clear (111) crystal-planes. X-ray Photo-electron Spectroscopy demonstrated that unloaded nanosheets were composed of MnO2 with a high number of oxygen vacancies (Vo/Mn 0.4). Loading with 7.0 nm Pt-nanoparticles induced a change to Mn2O3, while loading with 1.5 nm nanoparticles increased the number of vacancies (Vo/Mn 1.2). Nanosheets loaded with 3.0 nm Pt-nanoparticles possessed similarly high catalytic activities as Pt-single-atoms. However, loading with 1.5 nm or 7.0 nm Pt-nanoparticles yielded lower catalytic activities. A model is proposed explaining the low catalytic activity of under- and over-sized Pt-nanoparticles as compared with intermediately-sized (3.0 nm) Pt-nanoparticles and single-atoms. Herewith, catalytic activities of hybrid-nanozymes composed of single-atoms and intermediately-sized nanoparticles are put a par, as confirmed here with respect to bacterial biofilm eradication. This conclusion facilitates a balanced choice between using Pt-single-atoms or nanoparticles in further development and application of hybrid-nanozymes.

5.
Accid Anal Prev ; 201: 107571, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608507

RESUMEN

Drivers' risk perception plays a crucial role in understanding vehicle interactions and car-following behavior under complex conditions and physical appearances. Therefore, it is imperative to evaluate the variability of risks involved. With advancements in communication technology and computing power, real-time risk assessment has become feasible for enhancing traffic safety. In this study, a novel approach for evaluating driving interaction risk on freeways is presented. The approach involves the integration of an interaction risk perception model with car-following behavior. The proposed model, named the driving risk surrogate (DRS), is based on the potential field theory and incorporates a virtual energy attribute that considers vehicle size and velocity. Risk factors are quantified through sub-models, including an interactive vehicle risk surrogate, a restrictions risk surrogate, and a speed risk surrogate. The DRS model is applied to assess driving risk in a typical scenario on freeways, and car-following behavior. A sensitivity analysis is conducted on the effect of different parameters in the DRS on the stability of traffic dynamics in car-following behavior. This behavior is then calibrated using a naturalistic driving dataset, and then car-following predictions are made. It was found that the DRS-simulated car-following behavior has a more accurate trajectory prediction and velocity estimation than other car-following methods. The accuracy of the DRS risk assessments was verified by comparing its performance to that of traditional risk models, including TTC, DRAC, MTTC, and DRPFM, and the results show that the DRS model can more accurately estimate risk levels in free-flow and congested traffic states. Thus the proposed risk assessment model provides a better approach for describing vehicle interactions and behavior in the digital world for both researchers and practitioners.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Humanos , Conducción de Automóvil/psicología , Medición de Riesgo/métodos , Accidentes de Tránsito/prevención & control , Modelos Teóricos , Automóviles , Factores de Riesgo
6.
Nanoscale ; 16(4): 1673-1684, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38189461

RESUMEN

Addressing the challenges of chemodynamic therapies (CDTs) relying on Fenton reactions in malignant tumors is an active research area. Here, we report a method to develop pH-responsive hybrid nanoparticles for enhanced chemodynamic tumor treatment. Reactive CaO2 nanoparticles (core) are isolated by biocompatible ZIF-8 doped with Fe2+ (shell), and then encapsulated by macrophage membranes (symbolized as CaO2@Fe-ZIF-8@macrophage membrane or CFZM), thus endowed with high stability under normal physiological conditions. Our design features active tumor-homing by the macrophage-membrane coating, tumor microenvironment (TME)-responsive cargo release, and self-supplied hydrogen peroxide for promotion of the Fenton reaction. We demonstrate the improved delivery/tumor cell uptake of CFZM, the efficient production of toxic ˙OH with self-supplied H2O2 in CFZM, and high-efficacy tumor ablation on BALB/c mice bearing CT26 tumor cells. This offers a translational strategy to develop active tumor-targeting and TME-responsive nanotherapeutics with enhanced CDT against malignant tumors.


Asunto(s)
Nanopartículas , Neoplasias , Animales , Ratones , Peróxido de Hidrógeno , Citoplasma , Macrófagos , Ratones Endogámicos BALB C , Microambiente Tumoral , Línea Celular Tumoral
7.
Adv Healthc Mater ; 13(3): e2301747, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37908125

RESUMEN

Antimicrobial-resistant bacterial infections threaten to become the number one cause of death by the year 2050. Since the speed at which antimicrobial-resistance develops is exceeding the pace at which new antimicrobials come to the market, this threat cannot be countered by making more, new and stronger antimicrobials. Promising new antimicrobials should not only kill antimicrobial-resistant bacteria, but also prevent development of new bacterial resistance mechanisms in strains still susceptible. Here, PAMAM-dendrimers are clustered using glutaraldehyde to form megamers that are core-loaded with ciprofloxacin and functionalized with HA-SNO. Megamers are enzymatically disintegrated in an acidic pH, as in infectious biofilms, yielding release of ciprofloxacin and NO-generation by HA-SNO. NO-generation does not contribute to the killing of planktonic Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, but in a biofilm-mode of growth short-lived NO-assisted killing of both ciprofloxacin-susceptible and ciprofloxacin-resistant bacterial strains by the ciprofloxacin released. Repeated sub-culturing of ciprofloxacin-susceptible bacteria in presence of ciprofloxacin-loaded and HA-SNO functionalized PAMAM-megamers does not result in ciprofloxacin-resistant variants as does repeated culturing in presence of ciprofloxacin. Healing of wounds infected by a ciprofloxacin-resistant S. aureus variant treated with ciprofloxacin-loaded, HA-SNO functionalized megamers proceed faster through NO-assisted ciprofloxacin killing of infecting bacteria and stimulation of angiogenesis.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Ratones , Animales , Ciprofloxacina/farmacología , Antibacterianos/farmacología , Ácido Hialurónico/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Farmacorresistencia Microbiana , Antiinfecciosos/farmacología , Biopelículas , Concentración de Iones de Hidrógeno , Pseudomonas aeruginosa
8.
Int J Biol Sci ; 19(13): 4259-4277, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37705745

RESUMEN

When cancer cells enter the bloodstream, they can interact with platelets to acquire stronger survival and metastatic abilities. To elucidate the underlying mechanisms, we cocultured metastatic melanoma and triple-negative breast cancer cells with species-homologous platelets. We found that cocultured cancer cells displayed higher viabilities in circulation, stronger capacities for cell migration, invasion, and colony formation in vitro, and more tumorigenesis and metastasis in mice. RNA sequencing analysis revealed that the level of serpin family E member 1 (SERPINE1) was significantly upregulated in cocultured cancer cells. Knockdown of SERPINE1 reversed the coculture-elevated survival and metastatic phenotypes of cancer cells. Mechanistic studies indicated that coculture with platelets activated the TGFß/Smad pathway to induce SERPINE1 expression in cancer cells, which encodes plasminogen activator inhibitor 1 (PAI-1). PAI-1 then activated PI3K to increase the phosphorylation of AKTThr308 and Bad to elevate Bcl-2, which enhanced cell survival in circulation. Moreover, higher levels of PAI-1 were detected in metastatic tumors from melanoma and triple-negative breast cancer patients than in normal tissues, and high levels of PAI-1 were associated with a shorter overall survival time and worse disease progression in breast cancer. PAI-1 may act as a potential biomarker for detecting and treating metastatic tumor cells.


Asunto(s)
Melanoma , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Plaquetas , Inhibidor 1 de Activador Plasminogénico/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt , Técnicas de Cocultivo , Neoplasias de la Mama Triple Negativas/genética
9.
Biomaterials ; 302: 122320, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37738742

RESUMEN

Treatment of acute bacterial meningitis is difficult due to the impermeability of the blood-brain barrier, greatly limiting the antibiotic concentrations that can be achieved in the brain. Escherichia coli grown in presence of iron-oxide magnetic nanoparticles secrete large amounts of magnetic outer-membrane vesicles (OMVs) in order to remove excess Fe from their cytoplasm. OMVs are fully biomimetic nanocarriers, but can be inflammatory. Here, non-inflammatory magnetic OMVs were prepared from an E. coli strain in which the synthesis of inflammatory lipid A acyltransferase was inhibited using CRISPR/Cas9 mediated gene knockout. OMVs were loaded with ceftriaxone (CRO) and meso-tetra-(4-carboxyphenyl)porphine (TCPP) and magnetically driven across the blood-brain barrier for sonodynamic treatment of bacterial meningitis. ROS-generation upon ultrasound application of CRO- and TCPP-loaded OMVs yielded similar ROS-generation as by TCPP in solution. In vitro, ROS-generation by CRO- and TCPP-loaded OMVs upon ultrasound application operated synergistically with CRO to kill a hard-to-kill, CRO-tolerant E. coli strain. In a mouse model of CRO-tolerant E. coli meningitis, CRO- and TCPP-loaded OMVs improved survival rates and clinical behavioral scores of infected mice after magnetic targeting and ultrasound application. Recurrence did not occur for at least two weeks after arresting treatment.


Asunto(s)
Antibacterianos , Meningitis Bacterianas , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Escherichia coli , Especies Reactivas de Oxígeno , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Meningitis Bacterianas/tratamiento farmacológico , Proteínas de la Membrana Bacteriana Externa
10.
Acta Biomater ; 170: 442-452, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37634834

RESUMEN

It is an active research area in the development of engineered bacteria to address the bottleneck issue of hypoxic tumors, which otherwisely possess resistance to chemotherapies, radiotherapies, and photodynamic therapies. Here we report a new method to ablate hypoxic tumors with NIR-nanoantenna sensitized engineered bacteria (NASEB) in a highly effective and dual selective manner. It features engineered E. coli MG1655 (EB) with coatings of lanthanide upconversion nanoparticles (UCNPs) as external antennas on bacterial surface (MG1655/HlyE-sfGFP@UCNP@PEG), enabling NIR laser-switchable generation/secretion of HlyE perforin to kill cancer cells. We have demonstrated that NASEB enrichment on hypoxic tumor sites via their innate chemotactic tendency, in assistance of localized NIR laser irradiation, can suppress tumors with improved efficacy and selectivity, thus minimizing potential side effects in cancer treatment. The NIR-responsive nanoantenna sensitized switching in engineering bacteria is distinct from the previous reports, promising conceptually new development of therapeutics against hypoxic tumors. STATEMENT OF SIGNIFICANCE: Tumor hypoxia exacerbates tumor progression, but also reduces the efficacy of conventional chemotherapies, radiotherapies, or photodynamic therapies. Here we develop near infrared Nano Antenna Sensitized Engineered Bacteria (NASEB) to treat hypoxic tumors. NASEB can accumulate and proliferate on hypoxic tumor sites via their innate chemotactic tendency. After receiving NIR laser signals, the upconversion nanoparticles on NASEB surface as antennas can transduce them to blue light for activation of HlyE perforin in the protein factory of EB. Our method features dual selectivity on the tumor sites, contributed by hypoxic tumor homing of anaerobic bacteria and spatial confinement through selective NIR laser irradiation. The concept of NASEB promises to address the challenges of tumor hypoxia for cancer therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA