Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833522

RESUMEN

Recurrent somatic mutations in the BAF chromatin remodeling complex subunit ARID1A occur frequently in advanced urothelial carcinoma, endometrial cancers, and ovarian clear cell carcinoma, creating an alternative chromatin state that may be exploited therapeutically. The histone methyltransferase EZH2 has previously been identified as targetable vulnerability in the context of ARID1A mutations. Here, we describe the discovery of tulmimetostat, an orally available, clinical stage EZH2 inhibitor and elucidate its therapeutic potential for treating ARID1A mutant tumors. Tulmimetostat administration achieved efficacy in multiple ARID1A mutant bladder, ovarian, and endometrial tumor models and improved cisplatin response in chemotherapy-resistant models. Consistent with its comprehensive and durable level of target coverage, tulmimetostat demonstrated greater efficacy than other PRC2-targeted inhibitors at comparable or lower exposures in a bladder cancer xenograft mouse model. Tulmimetostat mediated extensive changes in gene expression in addition to a profound reduction in global H3K27me3 levels in tumors. Phase I clinical pharmacokinetic and pharmacodynamic data indicated that tulmimetostat exhibits durable exposure and profound target engagement. Importantly, a tulmimetostat controlled gene expression signature identified in whole blood from a cohort of 32 cancer patients correlated with tulmimetostat exposure, representing a pharmacodynamic marker for the assessment of target coverage for PRC2-targeted agents in the clinic. Collectively, this data suggests that tulmimetostat has the potential to achieve clinical benefit in solid tumors as a monotherapy but also in combination with chemotherapeutic agents and may be beneficial in various indications with recurrent ARID1A mutations.

2.
Life Sci Alliance ; 6(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36599624

RESUMEN

Replication licensing, a prerequisite of DNA replication, helps to ensure once-per-cell-cycle genome duplication. Some DNA replication-initiation proteins are sequentially loaded onto replication origins to form pre-replicative complexes (pre-RCs). ORC and Noc3p bind replication origins throughout the cell cycle, providing a platform for pre-RC assembly. We previously reported that cell cycle-dependent ORC dimerization is essential for the chromatin loading of the symmetric MCM double-hexamers. Here, we used Saccharomyces cerevisiae separation-of-function NOC3 mutants to confirm the separable roles of Noc3p in DNA replication and ribosome biogenesis. We also show that an essential and cell cycle-dependent Noc3p dimerization cycle regulates the ORC dimerization cycle. Noc3p dimerizes at the M-to-G1 transition and de-dimerizes in S-phase. The Noc3p dimerization cycle coupled with the ORC dimerization cycle enables replication licensing, protects nascent sister replication origins after replication initiation, and prevents re-replication. This study has revealed a new mechanism of replication licensing and elucidated the molecular mechanism of Noc3p as a mediator of ORC dimerization in pre-RC formation.


Asunto(s)
Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae , Ciclo Celular/genética , Dimerización , Replicación del ADN/genética , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Multimerización de Proteína/genética , Multimerización de Proteína/fisiología , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/fisiología , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología
3.
J Natl Cancer Cent ; 1(1): 15-22, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39036786

RESUMEN

The long-term effectiveness of targeted cancer therapies is limited by the development of resistance. Although epigenetic reprogramming has been implicated in resistance, the mechanisms remain elusive. Herein, we demonstrate that increased chromatin accessibility is involved in adaptive BRAF inhibitor (BRAFi)-resistance in melanoma cells. We observed loss of chromatin assembly factor 1 (CAF-1) and its related histone H3 lysine 9 trimethylation (H3K9me3) with adaptive BRAFi resistance. We further showed that depletion of CAF-1 provides chromatin plasticity for effective reprogramming by AP1 components to promote BRAFi resistance. Our data suggest that therapeutic approaches to restore H3K9me3 levels may compensate for the loss of CAF-1 and, in turn, suppress resistance to BRAF inhibitors.

4.
Cell Rep ; 30(10): 3323-3338.e6, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32160540

RESUMEN

Eukaryotic DNA replication licensing is a prerequisite for, and plays a role in, regulating genome duplication that occurs exactly once per cell cycle. ORC (origin recognition complex) binds to and marks replication origins throughout the cell cycle and loads other replication-initiation proteins onto replication origins to form pre-replicative complexes (pre-RCs), completing replication licensing. However, how an asymmetric single-heterohexameric ORC structure loads the symmetric MCM (minichromosome maintenance) double hexamers is controversial, and importantly, it remains unknown when and how ORC proteins associate with the newly replicated origins to protect them from invasion by histones. Here, we report an essential and cell-cycle-dependent ORC "dimerization cycle" that plays three fundamental roles in the regulation of DNA replication: providing a symmetric platform to load the symmetric pre-RCs, marking and protecting the nascent sister replication origins for the next licensing, and playing a crucial role to prevent origin re-licensing within the same cell cycle.


Asunto(s)
Ciclo Celular , Cromosomas Fúngicos/metabolismo , Replicación del ADN , Dimerización , Origen de Réplica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proliferación Celular , Cromatina/metabolismo , Modelos Biológicos , Mutación/genética , Fosforilación , Subunidades de Proteína/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nat Commun ; 10(1): 5304, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31757956

RESUMEN

DNA replication stress-mediated activation of the ATR kinase pathway is important for maintaining genomic stability. In this study, we identified a zinc finger protein, ZFP161 that functions as a replication stress response factor in ATR activation. Mechanistically, ZFP161 acts as a scaffolding protein to facilitate the interaction between RPA and ATR/ATRIP. ZFP161 binds to RPA and ATR/ATRIP through distinct regions and stabilizes the RPA-ATR-ATRIP complex at stalled replication forks. This function of ZFP161 is important to the ATR signaling cascade and genome stability maintenance. In addition, ZFP161 knockout mice showed a defect in ATR activation and genomic instability. Furthermore, low expression of ZFP161 is associated with higher cancer risk and chromosomal instability. Overall, these findings suggest that ZFP161 coordinates ATR/Chk1 pathway activation and helps maintain genomic stability.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Animales , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Daño del ADN , Replicación del ADN , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Proteína de Replicación A , Transducción de Señal
6.
Cell Cycle ; 18(6-7): 723-741, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30890025

RESUMEN

DNA replication is a stringently regulated cellular process. In proliferating cells, DNA replication-initiation proteins (RIPs) are sequentially loaded onto replication origins during the M-to-G1 transition to form the pre-replicative complex (pre-RC), a process known as replication licensing. Subsequently, additional RIPs are recruited to form the pre-initiation complex (pre-IC). RIPs and their regulators ensure that chromosomal DNA is replicated exactly once per cell cycle. Origin recognition complex (ORC) binds to, and marks replication origins throughout the cell cycle and recruits other RIPs including Noc3p, Ipi1-3p, Cdt1p, Cdc6p and Mcm2-7p to form the pre-RC. The detailed mechanisms and regulation of the pre-RC and its exact architecture still remain unclear. In this study, pairwise protein-protein interactions among 23 budding yeast and 16 human RIPs were systematically and comprehensively examined by yeast two-hybrid analysis. This study tested 470 pairs of yeast and 196 pairs of human RIPs, from which 113 and 96 positive interactions, respectively, were identified. While many of these interactions were previously reported, some were novel, including various ORC and MCM subunit interactions, ORC self-interactions, and the interactions of IPI3 and NOC3 with several pre-RC and pre-IC proteins. Ten of the novel interactions were further confirmed by co-immunoprecipitation assays. Furthermore, we identified the conserved interaction networks between the yeast and human RIPs. This study provides a foundation and framework for further understanding the architectures, interactions and functions of the yeast and human pre-RC and pre-IC.


Asunto(s)
Proteínas de Ciclo Celular/genética , Replicación del ADN/genética , Origen de Réplica/genética , Saccharomycetales/genética , Ciclo Celular/genética , Línea Celular , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Cromosomas/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Complejo de Reconocimiento del Origen/genética , Mapas de Interacción de Proteínas/genética
7.
Cell Cycle ; 18(5): 605-620, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30741601

RESUMEN

Noc3p (Nucleolar Complex-associated protein) is an essential protein in budding yeast DNA replication licensing. Noc3p mediates the loading of Cdc6p and MCM proteins onto replication origins during the M-to-G1 transition by interacting with ORC (Origin Recognition Complex) and MCM (Minichromosome Maintenance) proteins. FAD24 (Factor for Adipocyte Differentiation, clone number 24), the human homolog of Noc3p (hNOC3), was previously reported to play roles in the regulation of DNA replication and proliferation in human cells. However, the role of hNOC3 in replication licensing was unclear. Here we report that hNOC3 physically interacts with multiple human pre-replicative complex (pre-RC) proteins and associates with known replication origins throughout the cell cycle. Moreover, knockdown of hNOC3 in HeLa cells abrogates the chromatin association of other pre-RC proteins including hCDC6 and hMCM, leading to DNA replication defects and eventual apoptosis in an abortive S-phase. In comparison, specific inhibition of the ribosome biogenesis pathway by preventing pre-rRNA synthesis, does not lead to any cell cycle or DNA replication defect or apoptosis in the same timeframe as the hNOC3 knockdown experiments. Our findings strongly suggest that hNOC3 plays an essential role in pre-RC formation and the initiation of DNA replication independent of its potential role in ribosome biogenesis in human cells.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Replicación del ADN , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/antagonistas & inhibidores , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Origen de Réplica , Ribosomas/metabolismo , Puntos de Control de la Fase S del Ciclo Celular , Técnicas del Sistema de Dos Híbridos
9.
Nucleic Acids Res ; 45(1): 169-180, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-27679476

RESUMEN

DNA replication is tightly regulated to occur once and only once per cell cycle. How chromatin, the physiological substrate of DNA replication machinery, regulates DNA replication remains largely unknown. Here we show that histone H3 lysine 9 demethylase Kdm4d regulates DNA replication in eukaryotic cells. Depletion of Kdm4d results in defects in DNA replication, which can be rescued by the expression of H3K9M, a histone H3 mutant transgene that reverses the effect of Kdm4d on H3K9 methylation. Kdm4d interacts with replication proteins, and its recruitment to DNA replication origins depends on the two pre-replicative complex components (origin recognition complex [ORC] and minichromosome maintenance [MCM] complex). Depletion of Kdm4d impairs the recruitment of Cdc45, proliferating cell nuclear antigen (PCNA), and polymerase δ, but not ORC and MCM proteins. These results demonstrate a novel mechanism by which Kdm4d regulates DNA replication by reducing the H3K9me3 level to facilitate formation of pre-initiative complex.


Asunto(s)
Cromatina/metabolismo , Replicación del ADN , Histonas/genética , Histona Demetilasas con Dominio de Jumonji/genética , Animales , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/química , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Células HCT116 , Células HeLa , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/metabolismo , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Metilación , Ratones , Componente 4 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 4 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Células 3T3 NIH , Osteoblastos/citología , Osteoblastos/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
10.
Cancer Res ; 76(21): 6362-6373, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27578004

RESUMEN

The antimetabolite 5-fluorouracil (5-FU) is one of the most widely used chemotherapy drugs. Dihydropyrimidine dehydrogenase (DPD) is a major determinant of 5-FU response and toxicity. Although DPYD variants may affect 5-FU metabolism, they do not completely explain the reported variability in DPD function or the resultant differences in treatment response. Here, we report that H3K27 trimethylation (H3K27me3) at the DPYD promoter regulated by Ezh2 and UTX suppresses DPYD expression by inhibiting transcription factor PU.1 binding, leading to increased resistance to 5-FU. Enrichment of H3K27me3 at the DPYD promoter was negatively correlated with both DPYD expression and DPD enzyme activity in peripheral blood specimens from healthy volunteers. Lastly, tumor expression data suggest that DPYD repression by Ezh2 predicts poor survival in 5-FU-treated cancers. Collectively, the findings of the present article suggest that a previously uncharacterized mechanism regulates DPD expression and may contribute to tumor resistance to 5-FU. Cancer Res; 76(21); 6362-73. ©2016 AACR.


Asunto(s)
Dihidrouracilo Deshidrogenasa (NADP)/genética , Fluorouracilo/farmacología , Histonas/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Transactivadores/antagonistas & inhibidores , Resistencia a Antineoplásicos , Proteína Potenciadora del Homólogo Zeste 2/fisiología , Humanos , Metilación , Proteínas Proto-Oncogénicas/metabolismo , Transactivadores/metabolismo , Células Tumorales Cultivadas
11.
Cell Cycle ; 11(7): 1325-39, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22421151

RESUMEN

Several replication-initiation proteins are assembled stepwise onto replicators to form pre-replicative complexes (pre-RCs) to license eukaryotic DNA replication. We performed a yeast functional proteomic screen and identified the Rix1 complex members (Ipi1p-Ipi2p/Rix1-Ipi3p) as pre-RC components and critical determinants of replication licensing and replication-initiation frequency. Ipi3p interacts with pre-RC proteins, binds chromatin predominantly at ARS sequences in a cell cycle-regulated and ORC- and Noc3p-dependent manner and is required for loading Cdc6p, Cdt1p and MCM onto chromatin to form pre-RC during the M-to-G1 transition and for pre-RC maintenance in G1 phase-independent of its role in ribosome biogenesis. Moreover, Ipi1p and Ipi2p, but not other ribosome biogenesis proteins Rea1p and Utp1p, are also required for pre-RC formation and maintenance, and Ipi1p, -2p and -3p are interdependent for their chromatin association and function in pre-RC formation. These results establish a new framework for the hierarchy of pre-RC proteins, where the Ipi1p-2p-3p complex provides a critical link between ORC-Noc3p and Cdc6p-Cdt1p-MCM in replication licensing.


Asunto(s)
Replicación del ADN , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ciclo Celular/genética , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Fase G1/fisiología , Proteína 1 de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Proteoma , Origen de Réplica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Transactivadores/metabolismo
12.
J Cell Sci ; 125(Pt 1): 209-19, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22250202

RESUMEN

Regulation of DNA replication initiation is essential for the faithful inheritance of genetic information. Replication initiation is a multi-step process involving many factors including ORC, Cdt1p, Mcm2-7p and other proteins that bind to replication origins to form a pre-replicative complex (pre-RC). As a prerequisite for pre-RC assembly, Cdt1p and the Mcm2-7p heterohexameric complex accumulate in the nucleus in G1 phase in an interdependent manner in budding yeast. However, the nature of this interdependence is not clear, nor is it known whether Cdt1p is required for the assembly of the MCM complex. In this study, we provide the first evidence that Cdt1p, through its interaction with Mcm6p with the C-terminal regions of the two proteins, is crucial for the formation of the MCM complex in both the cytoplasm and nucleoplasm. We demonstrate that disruption of the interaction between Cdt1p and Mcm6p prevents the formation of the MCM complex, excludes Mcm2-7p from the nucleus, and inhibits pre-RC assembly and DNA replication. Our findings suggest a function for Cdt1p in promoting the assembly of the MCM complex and maintaining its integrity by interacting with Mcm6p.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/deficiencia , División Celular , Aumento de la Célula , Proteínas Cromosómicas no Histona/química , Replicación del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/deficiencia , Fase G1 , Componente 6 del Complejo de Mantenimiento de Minicromosoma , Componente 7 del Complejo de Mantenimiento de Minicromosoma , Complejos Multiproteicos/química , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
13.
Nucleic Acids Res ; 40(7): 3208-17, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22140117

RESUMEN

Initiation of DNA replication in eukaryotes is exquisitely regulated to ensure that DNA replication occurs exactly once in each cell division. A conserved and essential step for the initiation of eukaryotic DNA replication is the loading of the mini-chromosome maintenance 2-7 (MCM2-7) helicase onto chromatin at replication origins by Cdt1. To elucidate the molecular mechanism of this event, we determined the structure of the human Cdt1-Mcm6 binding domains, the Cdt1(410-440)/MCM6(708-821) complex by NMR. Our structural and site-directed mutagenesis studies showed that charge complementarity is a key determinant for the specific interaction between Cdt1 and Mcm2-7. When this interaction was interrupted by alanine substitutions of the conserved interacting residues, the corresponding yeast Cdt1 and Mcm6 mutants were defective in DNA replication and the chromatin loading of Mcm2, resulting in cell death. Having shown that Cdt1 and Mcm6 interact through their C-termini, and knowing that Cdt1 is tethered to Orc6 during the loading of MCM2-7, our results suggest that the MCM2-7 hexamer is loaded with its C terminal end facing the ORC complex. These results provide a structural basis for the Cdt1-mediated MCM2-7 chromatin loading.


Asunto(s)
Proteínas de Ciclo Celular/química , Cromatina/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicación del ADN , Humanos , Ratones , Componente 6 del Complejo de Mantenimiento de Minicromosoma , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Ratas , Homología de Secuencia de Aminoácido
14.
FEMS Yeast Res ; 11(1): 72-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20977626

RESUMEN

Far3p (factor arrest), a protein that interacts with Far7-11p, is required for the pheromone-mediated cell cycle arrest in G1 phase. We used a combination of computational and experimental strategies to identify the Far3p self-association, to map the Far3p domains that interact with Far3p itself and with other Far proteins, and to reveal the importance of the two coiled-coil motifs of Far3p in the integrity and function of the Far complex. We show that Far3p self-associates through its central region and its C-terminal coiled-coil domain, that the amino acid 61-100 region of Far3p interacts with Far7p, and that the Far3p N-terminal coiled-coil domain interacts with Far9p and Far10p. Mutation of the N-terminal coiled coil disrupts the interactions of Far3p with Far9p and Far10p, and mutation of the C-terminal domain weakens the Far3p self-interaction. Although the N- and C-terminal coiled-coil mutants reserve some of the interactions with itself and some other Far proteins, both mutants are defective in the pheromone-mediated G1 arrest, indicating that both coiled-coil motifs of Far3p are essential for the integrity and the function of the Far complex.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/efectos de los fármacos , Feromonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Proteínas de Ciclo Celular/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
15.
Biochem Biophys Res Commun ; 395(3): 336-41, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20381454

RESUMEN

Ctf4p (chromosome transmission fidelity) has been reported to function in DNA metabolism and sister chromatid cohesion in Saccharomyces cerevisiae. In this study, a ctf4(S143F) mutant was isolated from a yeast genetic screen to identify replication-initiation proteins. The ctf4(S143F) mutant exhibits plasmid maintenance defects which can be suppressed by the addition of multiple origins to the plasmid, like other known replication-initiation mutants. We show that both ctf4(S143F) and ctf4Delta strains have defects in S phase entry and S phase progression at the restrictive temperature of 38 degrees C. Ctf4p localizes in the nucleus throughout the cell cycle but only starts to bind chromatin at the G1/S transition and then disassociates from chromatin after DNA replication. Furthermore, Ctf4p interacts with Mcm10p physically and genetically, and the chromatin association of Ctf4p depends on Mcm10p. Finally, deletion of CTF4 destabilizes Mcm10p and Pol alpha in both mcm10-1 and MCM10 cells. These data indicate that Ctf4p facilitates Mcm10p to promote the DNA replication.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , ADN Polimerasa I/metabolismo , Proteínas de Unión al ADN/genética , Fase G1/genética , Proteínas de Mantenimiento de Minicromosoma , Mutación , Fase S/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
J Biol Chem ; 283(49): 33803-7, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-18845545

RESUMEN

The heterohexameric origin recognition complex (ORC) has been implicated in many cellular activities, including DNA replication, transcriptional control, heterochromatin assembly, centromere and telomere function, and so on. Here, we report a new function for ORC in mediating histone methylation. Using the yeast two-hybrid system, we identify a physical interaction between Orc2p and Spp1p, a member of the Set1 complex, and we demonstrate the interaction between the endogenous ORC and Spp1p by co-immunoprecipitation from yeast extracts. Furthermore, we find that Orc2p physically interacts with trimethylated histone 3 lysine 4 (H3K4) on chromatin by co-immunoprecipitation. Finally, we show that the trimethylation of H3K4 is decreased in orc2-1 cells and abolished in orc2-1, spp1Delta double mutants. Our data reveal a novel facet of ORC in mediating histone methylation in collaboration with Spp1p and demonstrate a connection between ORC and chromatin structure via the Set1 complex.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/química , Lisina/química , Complejo de Reconocimiento del Origen , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/química , Proteínas Fúngicas/metabolismo , N-Metiltransferasa de Histona-Lisina , Inmunoprecipitación , Metilación , Modelos Biológicos , Plásmidos/metabolismo , Saccharomyces cerevisiae/genética , Temperatura , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA