Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 419-427, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38790098

RESUMEN

Objective To investigate the effect of lysine 27 residue of histone H3 (H3K27) acetylation modification on the transcriptional promotion of long noncoding RNA OPA interacting protein 5-antisense RNA 1 (lncRNA OIP5-AS1) and apoptosis of nasal epithelial cells (NECs) in allergic rhinitis (AR) via regulating Toll-like receptor 4 (TLR4). Methods Interleukin-13 (IL-13) was used to treat NECs to establish an AR cell model. Real-time quantitative PCR was utilized to detect the expressions of OIP5-AS1 and TLR4 in nasal mucosal tissues of AR patients and in the in vitro cell model. The concentrations of macrophage colony-stimulating factor (GM-CSF), eotaxin-1, and mucin 5AC (MUC5AC) were detected by ELISA. The apoptosis of NECs was determined by terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL). A dual-luciferase report experiment was carried out to verify the relationship between OIP5-AS1 and TLR4. Chromatin immunoprecipitation (ChIP) assay was performed to verify H3K27 acetylation of histones in the OIP5-AS1 promoter region. Results Compared with healthy controls and untreated NECs, OIP5-AS1 and TLR4 were both up-regulated in nasal mucosal tissues from AR patients and IL-13-stimulated NECs. Knockdown of OIP5-AS1 decreased the level of TLR4 in IL-13-treated NECs, while overexpression of OIP5-AS1 increased the level of TLR4. Inhibition of OIP5-AS1 reduced the apoptosis rate, and inhibited the secretion of GM-CSF, eotaxin-1, and MUC5AC from IL-13-treated NECs, while overexpression of TLR4 partially reversed the effects of OIP5-AS1 knockdown on NEC apoptosis and the secretion of GM-CSF, eotaxin-1, and MUC5AC. In addition, H3K27 acetylation was markedly enriched in the promoter region of OIP5-AS1, and H3K27 acetylation promoted the expression of OIP5-AS1 in IL-13-treated NECs. Conclusion H3K27 acetylation promotes OIP5-AS1 transcription and induces NEC apoptosis in AR via upregulation of TLR4.


Asunto(s)
Apoptosis , Células Epiteliales , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Histonas , Mucosa Nasal , ARN Largo no Codificante , Rinitis Alérgica , Receptor Toll-Like 4 , Regulación hacia Arriba , Humanos , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Acetilación , Apoptosis/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Rinitis Alérgica/genética , Rinitis Alérgica/metabolismo , Histonas/metabolismo , Histonas/genética , Mucosa Nasal/metabolismo , Células Epiteliales/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Masculino , Femenino , Adulto , Interleucina-13/genética , Interleucina-13/metabolismo , Quimiocina CCL11/genética , Quimiocina CCL11/metabolismo , Mucina 5AC/genética , Mucina 5AC/metabolismo , Persona de Mediana Edad
2.
Food Chem ; 454: 139795, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38810450

RESUMEN

Pelodiscus sinensis is an aquatic product with a long growth cycle in pond culture and high nutritional value meat. The flavor compounds, nutrients, and lipidome were investigated to explore the edible value changes of turtle meat aged 3 to 6 years (Y3 to Y6). Typically, P. sinensis meat is rich in high-quality protein (EAAI ≥81.22, AAS ≥86.47). Y6 has the highest level of Se, protein, amino acids, and high unsaturated fatty acids, including EPA + DHA. Y5 has the most delicious amino acids, polyunsaturated fatty acids, and key odorant content. The stronger flavor of Y5 may be mainly related to C18:2n6t and C18:2n6c. Further, triacylglycerols (TAG) and phosphatidylcholine (PC) were significant changes in Y5. Additionally, PI (16:0/18:1) was identified as the potential biomarker. These results provided available information on P. sinensis marketing age and revealed the potential impact of nutrients on the formation of VOCs.

3.
Eur J Neurosci ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38663879

RESUMEN

Neurons are post-mitotic cells, with microtubules playing crucial roles in axonal transport and growth. Kinesin family member 2c (KIF2C), a member of the Kinesin-13 family, possesses the ability to depolymerize microtubules and is involved in remodelling the microtubule lattice. Myocyte enhancer factor 2c (MEF2C) was initially identified as a regulator of muscle differentiation but has recently been associated with neurological abnormalities such as severe cognitive impairment, stereotyping, epilepsy and brain malformations when mutated or deleted. However, further investigation is required to determine which target genes MEF2C acts upon to influence neuronal function as a transcription regulator. Our data demonstrate that knockdown of both Mef2c and Kif2c significantly impacts spinal motor neuron development and behaviour in zebrafish. Luciferase reporter assays and chromosome immunoprecipitation assays, along with down/upregulated expression analysis, revealed that MFE2C functions as a novel transcription regulator for the Kif2c gene. Additionally, the knockdown of either Mef2c or Kif2c expression in E18 cortical neurons substantially reduces the number of primary neurites and axonal branches during neuronal development in vitro without affecting neurite length. Finally, depletion of Kif2c eliminated the effects of overexpression of Mef2c on the neurite branching. Based on these findings, we provided novel evidence demonstrating that MEF2C regulates the transcription of the Kif2c gene thereby influencing the axonal branching.

4.
Comput Methods Programs Biomed ; 250: 108177, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38648704

RESUMEN

BACKGROUND AND OBJECTIVE: The effective segmentation of esophageal squamous carcinoma lesions in CT scans is significant for auxiliary diagnosis and treatment. However, accurate lesion segmentation is still a challenging task due to the irregular form of the esophagus and small size, the inconsistency of spatio-temporal structure, and low contrast of esophagus and its peripheral tissues in medical images. The objective of this study is to improve the segmentation effect of esophageal squamous cell carcinoma lesions. METHODS: It is critical for a segmentation network to effectively extract 3D discriminative features to distinguish esophageal cancers from some visually closed adjacent esophageal tissues and organs. In this work, an efficient HRU-Net architecture (High-Resolution U-Net) was exploited for esophageal cancer and esophageal carcinoma segmentation in CT slices. Based on the idea of localization first and segmentation later, the HRU-Net locates the esophageal region before segmentation. In addition, an Resolution Fusion Module (RFM) was designed to integrate the information of adjacent resolution feature maps to obtain strong semantic information, as well as preserve the high-resolution features. RESULTS: Compared with the other five typical methods, the devised HRU-Net is capable of generating superior segmentation results. CONCLUSIONS: Our proposed HRU-NET improves the accuracy of segmentation for squamous esophageal cancer. Compared to other models, our model performs the best. The designed method may improve the efficiency of clinical diagnosis of esophageal squamous cell carcinoma lesions.


Asunto(s)
Neoplasias Esofágicas , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X , Humanos , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/radioterapia , Tomografía Computarizada por Rayos X/métodos , Carcinoma de Células Escamosas de Esófago/diagnóstico por imagen , Carcinoma de Células Escamosas de Esófago/radioterapia , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos
5.
Plant Physiol Biochem ; 208: 108442, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382345

RESUMEN

Reversible histone acetylation and deacetylation play an essential role in regulating chromatin structure and gene expression. Histone deacetylases (HDACs) catalyze the removal of acetyl groups from lysine residues of core histones, resulting in closed chromatin structure and transcription repression. Although the HDCAs have been extensively studied in model plants, the HDAC members have not been identified in Phyla nodiflora (L.) Greene (P. nodiflora), a salt-tolerant plant species. Here, 17 PnHDAC genes were identified in the genome of P. nodiflora. Phylogenetic analysis displayed that the PnHDACs were classified into three groups, the RPD3/HDA1-group (11 members), the SIR2-group (2 members) and the plant-specific HD2-group (4 members). Transcription analysis displayed that the gene expression patterns of PnHDACs were affected by salt stress in P. nodiflora seedlings. PnHDT1 and PnHDT2, two HD2-type HDAC proteins were found to be subcellular localized in the nucleolus. Furthermore, overexpressing PnHDT1 and PnHDT2 in Arabidopsis decreased the sensitivity to plant hormone abscisic acid whereas reduced the tolerance to salt stress during seed germination and seedling stages. Overall, our work identified the PnHDAC gene family for the first time in P. nodiflora and revealed an involvement of PnHDT1 and PnHDT2 in salt stress tolerance, which may contribute to uncover the mechanism of P. nodiflora in adaption to salt environments.


Asunto(s)
Ácido Abscísico , Arabidopsis , Filogenia , Reguladores del Crecimiento de las Plantas , Arabidopsis/genética , Plantones/genética , Tolerancia a la Sal/genética , Cromatina , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
6.
J Fish Biol ; 104(5): 1566-1578, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38414201

RESUMEN

In this study, Micropterus salmoides were fed with dietary glutathione (GSH, 0, 100, 300, and 500 mg/kg) for 56 days to investigate its effects on growth performance, serum nonspecific immunity, liver antioxidant capacity, tissue morphology, and intestinal microbiota. The results showed that the survival rate, weight gain rate, and specific growth rate and condition factor increased, whereas the feed conversion ratio, hepato-somatic index, and viscerosomatic index decreased in the GSH groups. Compared with the control group, the serum total protein content significantly increased, whereas the triglyceride and total cholesterol significantly decreased in the 300-mg/kg dietary GSH group. The activities of lysozyme, alkaline phosphatase, and acid phosphatase were significantly higher in GSH-supplemented groups, peaking at 300-mg/kg GSH. GSH supplementation significantly increased total antioxidant capacity and decreased malondialdehyde content, with the most pronounced effects at 300-mg/kg GSH. Further antioxidant indicators showed that a dietary supplement of 300-mg/kg GSH significantly increased the activities of superoxide dismutase, glutathione transferase, endogenous glutathione, glutathione reductase, and catalase. At 300-mg/kg GSH, the liver exhibited improved characteristics with alleviated vacuolation and hepatocyte nuclear shift, and intestine showed enhanced structure with increased villus height and intestinal wall thickness. Additionally, a 300-mg/kg GSH supplementation improved the diversity of intestinal microbiota, increased the abundance of probiotics such as Bacillus, and inhibited the development of pathogenic bacteria such as Plesiomonas. Overall, the results suggest that the effect of GSH addition on improving growth performance, nonspecific immunity, antioxidant capacity, and intestinal microbiota of M. salmoides is best in the 300-mg/kg addition group. Based on second-degree polynomial regression analysis of weight gain, the optimum requirement of dietary GSH in M. salmoides is a 336.84-mg/kg diet.


Asunto(s)
Alimentación Animal , Antioxidantes , Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Glutatión , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Antioxidantes/metabolismo , Glutatión/metabolismo , Alimentación Animal/análisis , Dieta/veterinaria , Hígado , Inmunidad Innata/efectos de los fármacos
7.
Int J Biol Macromol ; 261(Pt 1): 129676, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272420

RESUMEN

Aeromonas hydrophila is a serious human and animal co-pathogenic bacterium. Flagellum, a key virulence factor, is vital for bacterium tissue colonization and invasion. flgL is a crucial gene involved in the composition of flagellum. However, the impact of flgL on virulence is not yet clear. In this study, we constructed a stable mutant strain (△flgL-AH) using homologous recombination. The results of the attack experiments indicated a significant decrease in the virulence of △flgL-AH. The biological properties analysis revealed a significant decline in swimming ability and biofilm formation capacity in △flgL-AH and the transmission electron microscope results showed that the ∆flgL-AH strain did not have a flagellar structure. Moreover, a significant decrease in the adhesion capacity of ∆flgL-AH was found using absolute fluorescence quantitative polymerase chain reaction (PCR). The quantitative real-time PCR results showed that the expression of omp and the eight flagellum-related genes were down-regulated. In summary, flgL mutation leads to a reduction in pathogenicity possibly via decreasing the swimming ability, biofilm formation capacity and adhesion capacity, these changes might result from the down expression of omp and flagellar-related genes.


Asunto(s)
Aeromonas hydrophila , Natación , Animales , Humanos , Virulencia/genética , Aeromonas hydrophila/genética , Biopelículas , Mutación , Expresión Génica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
8.
Mol Neurobiol ; 61(2): 971-981, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37672148

RESUMEN

Transcription factors are essential for the development and regeneration of the nervous system. The current study investigated key regulatory transcription factors in rat spinal cord development via RNA sequencing. The hub gene Ets1 was highly expressed in the spinal cord during the embryonic period, and then its expression decreased during spinal cord development. Knockdown of Ets1 significantly increased the axonal growth of cultured spinal cord neurons. Luciferase reporter assays and chromatin immunoprecipitation assays indicated that Ets1 could directly bind to the Lcn2 promoter and positively regulate Lcn2 transcription. In conclusion, these findings provide the first direct evidence that Ets1 regulates axon growth by controlling Lcn2 expression, and Ets1 may be a novel therapeutic target for axon regeneration in the central nervous system.


Asunto(s)
Axones , Factores de Transcripción , Animales , Ratas , Axones/metabolismo , Regulación de la Expresión Génica , Regeneración Nerviosa , Neuronas/metabolismo , Factores de Transcripción/metabolismo
9.
Neural Regen Res ; 19(8): 1812-1821, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103248

RESUMEN

JOURNAL/nrgr/04.03/01300535-202408000-00035/figure1/v/2023-12-16T180322Z/r/image-tiff Exosomes exhibit complex biological functions and mediate a variety of biological processes, such as promoting axonal regeneration and functional recovery after injury. Long non-coding RNAs (lncRNAs) have been reported to play a crucial role in axonal regeneration. However, the role of the lncRNA-microRNA-messenger RNA (mRNA)-competitive endogenous RNA (ceRNA) network in exosome-mediated axonal regeneration remains unclear. In this study, we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts (FC-EXOs) and Schwann cells (SC-EXOs). Differential gene expression analysis, Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, and protein-protein interaction network analysis were used to explore the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs. We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs, which suggests that it may promote axonal regeneration. In addition, using the miRWalk and Starbase prediction databases, we constructed a regulatory network of ceRNAs targeting Rps5, including 27 microRNAs and five lncRNAs. The ceRNA regulatory network, which included Ftx and Miat, revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury. Our findings suggest that exosomes derived from fibroblast and Schwann cells could be used to treat injuries of peripheral nervous system.

10.
Int J Biol Macromol ; 258(Pt 2): 129082, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38161026

RESUMEN

Aeromonas hydrophila is a highly pathogenic aquatic resident bacterium that can cause co-morbidity in aquatic animals, waterfowl, poultry, and humans. Flagellum is the motility organ of bacteria important for bacterium tissue colonization and invasion. The flgK gene encodes a flagellar hook protein essential for normal flagellar formation. In order to explore the role of flgK in A. hydrophila, a flgK gene mutant strain of A. hydrophila (∆flgK-AH) was constructed using an efficient suicide plasmid-mediated homologous recombination method, and gene sequencing confirmed successful mutation of the flgK gene. The biological properties, pathogenicity and virulence genes expression were compared. The results showed that there was no significant difference in the growth, hemolytic, and swarming abilities, but the swimming and biofilm formation abilities of ∆flgK-AH were significantly reduced and the transmission electron microscope (TEM) results showed that the ∆flgK-AH strain did not have a flagellar structure. The median lethal dose (LD50) value of the ∆flgK-AH in Carassius auratus was 1.47-fold higher than that of the wild-type strain (WT-AH). The quantitative real-time PCR results showed that only the expression level of the lapA gene was up-regulated by 1.47 times compared with the WT-AH, while the expression levels of other genes were significantly down-regulated. In conclusion, flgK gene mutant led to a decline in the pathogenicity possibly by reducing swimming and biofilm formation abilities, these biological properties might result from the down-regulated expression of flagellate and pilus-related genes.


Asunto(s)
Aeromonas hydrophila , Proteínas , Animales , Humanos , Virulencia , Proteínas/metabolismo , Factores de Virulencia/metabolismo , Expresión Génica , Proteínas Bacterianas/metabolismo
11.
Dev Biol ; 504: 49-57, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37741309

RESUMEN

SAM and SH3 domain-containing 1 (SASH1), a member of the SLy protein family, is a tumor suppressor gene that has been studied for its association with various cancers. SASH1 is highly expressed in the mammalian central nervous system, particularly in glial cells, and is expressed in the central nervous system during zebrafish embryo development. However, SASH1's role in brain development has rarely been investigated. In this study, Morpholino oligonucleotides (MO) were used to down-regulate sash1a expression in zebrafish to observe morphological changes in the brain. Three transgenic zebrafish lines, Tg(gfap:eGFP), Tg(hb9:eGFP), and Tg(coro1a:eGFP) were selected to observe changes in glial cells, neurons, and immune cells after sash1a knockdown. Our results showed that the number of microglia residing in the developmental brain was reduced, whereas the axonal growth of caudal primary motor neurons was unaffected by sash1a downregulation. And more significantly, the gfap + glia presented abnormal arrangements and disordered orientations in sash1a morphants. The similar phenotype was verified in the mutation induced by the injection of cas9 mRNA and sash1a sgRNA. We further performed behavioral experiments in zebrafish larvae that had been injected with sash1a MO at one-cell stage, and found them exhibiting abnormal behavior trajectories. Moreover, injecting the human SASH1 mRNA rescued these phenomena in sash1a MO zebrafish. In summary, our study revealed that the downregulation of SASH1 leads to malformations in the embryonic brain and disorganization of glial cell marshalling, suggesting that SASH1 plays an important role in the migration of glial cells during embryonic brain development.


Asunto(s)
Proteínas Supresoras de Tumor , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Sistema Nervioso Central/metabolismo , Movimiento Celular/genética , ARN Mensajero , Mamíferos/metabolismo
12.
J Biol Chem ; 299(9): 105153, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37567476

RESUMEN

Astrocyte activation and proliferation contribute to glial scar formation during spinal cord injury (SCI), which limits nerve regeneration. The long noncoding RNAs (lncRNAs) are involved in astrocyte proliferation and act as novel epigenetic regulators. Here, we found that lncRNA-LOC100909675 (LOC9675) expression promptly increased after SCI and that reducing its expression decreased the proliferation and migration of the cultured spinal astrocytes. Depletion of LOC9675 reduced astrocyte proliferation and facilitated axonal regrowth after SCI. LOC9675 mainly localized in astrocytic nuclei. We used RNA-seq to analyze gene expression profile alterations in LOC9675-depleted astrocytes and identified the cyclin-dependent kinase 1 (Cdk1) gene as a hub candidate. Our RNA pull-down and RNA immunoprecipitation assays showed that LOC9675 directly interacted with the transcriptional regulator CCCTC-binding factor (CTCF). Dual-luciferase reporter and chromatin immunoprecipitation assays, together with downregulated/upregulated expression investigation, revealed that CTCF is a novel regulator of the Cdk1 gene. Interestingly, we found that with the simultaneous overexpression of CTCF and LOC9675 in astrocytes, the Cdk1 transcript was restored to the normal level. We then designed the deletion construct of LOC9675 by removing its interacting region with CTCF and found this effect disappeared. A transcription inhibition assay using actinomycin D revealed that LOC9675 could stabilize Cdk1 mRNA, while LOC9675 depletion or binding with CTCF reduced Cdk1 mRNA stability. These data suggest that the cooperation between CTCF and LOC9675 regulates Cdk1 transcription at a steady level, thereby strictly controlling astrocyte proliferation. This study provides a novel perspective on the regulation of the Cdk1 gene transcript by lncRNA LOC9675.

13.
Geroscience ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37532927

RESUMEN

Female infertility due to declining oocyte quality with age remains a significant challenge for patients and physicians, despite extensive research efforts. Recent studies suggest that microRNAs (miRNAs), which respond to various stressors in the aging process, may provide a promising solution. With the approval of small RNA drugs for clinical use, miRNA-based treatment of oocyte aging appears to be a viable option. Through high-throughput sequencing, miR-425-5p was identified as the only miRNA elevated under natural aging and oxidative stress. Microinjection of inhibitors to inhibit miR-425-5p effectively improved compromised phenotypes of old oocytes in vitro. Further investigation revealed that Crebzf acts as a mediator of miR-425-5p's age-related functions in old oocytes. In vivo treatment with miR-425-5p antagomirs significantly improved impaired oocyte development in reproductively old females by targeting Crebzf. Single-cell RNA sequencing revealed that Crebzf plays a vital role in regulating mRNAs targeting histone H3, trimethylated lysine 4 (H3K4me3), a crucial marker for transcriptional silencing. Overexpression of miR-425-5p could hinder oocyte maturation by downregulating Crebzf expression and disrupting transcriptional regulation. Our findings provide new insights into the potential of miR-425-5p antagomirs as a treatment for female infertility and highlight an elegant mechanism by which miR-425-5p inhibition of Crebzf inhibits a developmental switch in GV oocytes by regulating a group of histone methyltransferase mRNAs.

14.
Lasers Med Sci ; 38(1): 174, 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37535153

RESUMEN

The aim of this study was to introduce a new surgical procedure for the resection of sigmoid colon tumours invading the bladder by combining laparoscopy and cystoscopy, and the feasibility and safety of the method were verified. The data of 6 patients with sigmoid colon cancer invading the bladder in a tertiary hospital in Chongqing from January 2020 to October 2022 were collected, sigmoid colon tumour resection was performed by this procedure, and the data related to the surgery were recorded. All six patients successfully underwent sigmoid colon tumour resection, and all sigmoid colon and bladder resections had negative margins. The mean total operative time was 211.66 ± 27.33 min, and the mean resection time of the bladder tumour was 22.16 ± 4.63 min. The median blood loss was 100 ml, and the mean number of retrieved lymph nodes was nineteen. There were no serious intraoperative complications in any of the cases. After operation, the first flatus and defecation were 4 and 4.5 days, respectively. The mean time of drainage tube retention and the time of bladder flushing were 3 and 1.5 days, respectively. The mean time of urinary tube retention was 7.5 days. There were no intestinal obstructions, dysuria, or other complications. For patients with sigmoid colon tumours invading the bladder, this method can effectively resect sigmoid colon tumours and minimize the loss of bladder tissue at the same time, which helps to prolong the survival of these patients. The surgical method is safe, reliable, and feasible.


Asunto(s)
Laparoscopía , Láseres de Estado Sólido , Neoplasias del Colon Sigmoide , Retención Urinaria , Humanos , Colon Sigmoide/cirugía , Colon Sigmoide/patología , Laparoscopía/efectos adversos , Laparoscopía/métodos , Láseres de Estado Sólido/efectos adversos , Estudios Retrospectivos , Neoplasias del Colon Sigmoide/cirugía , Neoplasias del Colon Sigmoide/etiología , Neoplasias del Colon Sigmoide/patología , Resultado del Tratamiento , Vejiga Urinaria/cirugía , Retención Urinaria/etiología
15.
Front Endocrinol (Lausanne) ; 14: 1112507, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538791

RESUMEN

Objective: Pyroptosis, a lytic and inflammatory programmed cell death, has been implicated in type 2 diabetes mellitus (T2DM) and its complications. Nonetheless, it remains elusive exactly which pyroptosis molecule exerts an essential role in T2DM, and this study aims to solve such issue. Methods: Transcriptional profiling datasets of T2DM, i.e., GSE20966, GSE95849, and GSE26168, were acquired. Four machine learning models, namely, random forest, support vector machine, extreme gradient boosting, and generalized linear modeling, were built based on pyroptosis genes. A nomogram of key pyroptosis genes was also generated, and the clinical value was appraised via calibration curves and decision curve analysis. Immune infiltration was inferred utilizing CIBERSORT. Drug-druggable target relationships were acquired from the Drug Gene Interaction Database. Through WGCNA, key pyroptosis-relevant genes were selected. Results: Most pyroptosis genes exhibited upregulation in T2DM relative to controls, indicating the activity of pyroptosis in T2DM. The SVM model composed of BAK1, CHMP2B, NLRP6, PLCG1, and TIRAP exhibited the best performance in T2DM diagnosis, with AUC = 1. The nomogram can predict the risk of T2DM for clinical practice. NK cells resting exhibited a lower abundance in T2DM versus normal specimens, with a higher abundance of neutrophils. NLRP6 was positively linked with neutrophils. Drugs (keracyanin, 9,10-phenanthrenequinone, diclofenac, phosphomethylphosphonic acid adenosyl ester, acetaminophen, cefixime, aspirin, ustekinumab) potentially targeted the key pyroptosis genes. Additionally, CHMP2B-relevant genes were determined. Conclusion: Altogether, this work proposes the key pyroptosis genes in T2DM, which might become possible molecules for the management and treatment of T2DM and its complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Piroptosis , Humanos , Piroptosis/genética , Diabetes Mellitus Tipo 2/genética , Genes Reguladores , Apoptosis , Activación Transcripcional
16.
Reprod Biomed Online ; 47(4): 103238, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37573751

RESUMEN

RESEARCH QUESTION: Is early embryo development in mice influenced by RNA binding protein with multiple splicing 2 (RBPMS2), a maternal factor that accumulates and is stored in the cytoplasm of mature oocytes? DESIGN: The expression patterns of RBPMS2 in mouse were analysed using quantitative real-time PCR (qRT PCR) and immunofluorescence staining. The effect of knockdown of RBPMS2 on embryo development was evaluated through a microinjection of specific morpholino or small interfering RNA. RNA sequencing was performed for mechanistic analysis. The interaction between RBPMS2 and the bone morphogenetic protein (BMP) pathway was studied using BMP inhibitor and activator. The effect on the localization of E-cadherin was determined by immunofluorescence staining. RESULTS: Maternal protein RBPMS2 is highly expressed in mouse oocytes, and knockdown of RBPMS2 inhibits embryo development from the morula to the blastocyst stage. Mechanistically, RNA sequencing showed that the differentially expressed genes were enriched in the transforming growth factor-ß (TGF-ß) signalling pathway. BMPs are members of the TGF-ß superfamily of growth factors. It was found that the addition of BMP inhibitor to the culture medium led to a morula-stage arrest, similar to that seen in RBPMS2 knockdown embryos. This morula-stage arrest defect caused by RBPMS2 knockdown was partially rescued by BMP activator. Furthermore, the localization of E-cadherin to the membrane was impaired in response to a knockdown of RBPMS2 or inhibition of the BMP pathway. CONCLUSION: This study suggests that RBPMS2 activates the BMP pathway and thus influences the localization of E-cadherin, which is important for early mouse embryo development during blastocyst formation.


Asunto(s)
Proteínas Morfogenéticas Óseas , Desarrollo Embrionario , Animales , Ratones , Blastocisto/metabolismo , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Desarrollo Embrionario/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
17.
Neural Regen Res ; 18(12): 2727-2732, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37449637

RESUMEN

Fidgetin, a microtubule-severing enzyme, regulates neurite outgrowth, axonal regeneration, and cell migration by trimming off the labile domain of microtubule polymers. Because maintenance of the microtubule labile domain is essential for axon initiation, elongation, and navigation, it is of interest to determine whether augmenting the microtubule labile domain via depletion of fidgetin serves as a therapeutic approach to promote axonal regrowth in spinal cord injury. In this study, we constructed rat models of spinal cord injury and sciatic nerve injury. Compared with spinal cord injury, we found that expression level of tyrosinated microtubules in the labile portion of microtubules continuously increased, whereas fidgetin decreased after peripheral nerve injury. Depletion of fidgetin enhanced axon regeneration after spinal cord injury, whereas expression level of end binding protein 3 (EB3) markedly increased. Next, we performed RNA interference to knockdown EB3 or fidgetin. We found that deletion of EB3 did not change fidgetin expression. Conversely, deletion of fidgetin markedly increased expression of tyrosinated microtubules and EB3. Deletion of fidgetin increased the amount of EB3 at the end of neurites and thereby increased the level of tyrosinated microtubules. Finally, we deleted EB3 and overexpressed fidgetin. We found that fidgetin trimmed tyrosinated tubulins by interacting with EB3. When fidgetin was deleted, the labile portion of microtubules was elongated, and as a result the length of axons and number of axon branches were increased. These findings suggest that fidgetin can be used as a novel therapeutic target to promote axonal regeneration after spinal cord injury. Furthermore, they reveal an innovative mechanism by which fidgetin preferentially severs labile microtubules.

18.
Metab Brain Dis ; 38(7): 2369-2381, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37256467

RESUMEN

Neuropsychiatric disorders have a high incidence worldwide. Kinesins, a family of microtubule-based molecular motor proteins, play essential roles in intracellular and axonal transport. Variants of kinesins have been found to be related to many diseases, including neurodevelopmental/neurodegenerative disorders. Kinesin-12 (also known as Kif15) was previously found to affect the frequency of both directional microtubule transports. However, whether Kif15 deficiency impacts mood in mice is yet to be investigated. In this study, we used the CRISPR/Cas9 method to obtain Kif15-/- mice. In behavioral tests, Kif15-/- female mice exhibited prominent depressive characteristics. Further studies showed that the expression of BDNF was significantly decreased in the frontal cortex, corpus callosum, and hippocampus of Kif15-/- mice, along with the upregulation of Interleukin-6 and Interleukin-1ß in the corpus callosum. In addition, the expression patterns of AnkG were notably changed in the developing brain of Kif15-/- mice. Based on our previous studies, we suggested that this appearance of altered AnkG was due to the maladjustment of the microtubule patterns induced by Kif15 deficiency. The distribution of PSD95 in neurites notably decreased after cultured neurons treated with the Kif15 inhibitor, but total PSD95 protein level was not impacted, which revealed that Kif15 may contribute to PSD95 transportation. This study suggested that Kif15 may serve as a potential target for future depression studies.


Asunto(s)
Depresión , Cinesinas , Animales , Femenino , Ratones , Depresión/genética , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo
19.
Int J Biol Macromol ; 240: 124447, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37080411

RESUMEN

Autologous nerve transplantation is the gold standard for treating peripheral nerve defects, but it is associated with defects such as insufficient donor and secondary injury. Artificial nerve guidance conduits (NGCs) are now considered promising alternatives for bridging long nerve gaps, although exploring new biomaterials to construct NGCs remains challenging. Silk fibroin (SF) has good biocompatibility and can self-assemble in aqueous solutions. However, the lack of proximal neurotrophic factors after nerve injury is a major concern, leading to incomplete nerve regeneration. In this study, NT-3, a neurotrophin that promotes neuronal survival and differentiation, was bound to the light chain of silk fibroin (FIBL) in two ways: one was directly bound to FIBL (FIBL-NT3) and the other was a polypeptides-linker (FIBL-Linker-NT3). The design aimed to take advantage of silk fiber's character of self-assembly of heavy-light chains and test whether a flexible linker with NT3 molecule is easy to be a NT3 dimer, the active form. In vitro studies indicated that FIBL-Linker-NT3 combined with SF membranes promoted axon growth in adult rat dorsal root ganglion (DRG) neurons. Then we tested if FIBL-Linker-NT3 could self-assemble with the SF heavy chain (SFH). DTT (Dithiothreitol) was used to break the disulfide bonds between the SF light and heavy chains, and the light-chain protein was removed via dialysis. SFH was assembled using FIBL-Linker-NT3, as evidenced by the western blotting results that showed a high molecular band corresponding to SFH-FIBL-Linker-NT3. Chitosan scaffolds have been identified to provide a suitable microenvironment, so a chitosan/SF-FIBL-Linker-NT3 conduit was also constructed. Nerve transplantation of this conduit was evaluated in vivo in a rat sciatic nerve defect model. Immunohistochemical assays showed that the chitosan/SF-FIBL-Linker-NT3 group was superior to the chitosan/PBS, SF, PBS + FIBL-Linker-NT3 groups in nerve regeneration. In addition, the chitosan/SF-FIBL-Linker-NT3 conduit-transplanted group exhibited better recovery in terms of neurite length, sciatic functional index value, sensitivity to heat, time on the rotarod, wet weight ratio, cross-sectional area, compound muscle action potential, number of myelin layers, and myelin thickness in the nerve. Taking together, our study identified that FIBL-Linker-NT3 could promote axonal growth and regeneration in vivo and in vitro and is a promising candidate biomaterial for artificial NGCs.


Asunto(s)
Quitosano , Fibroínas , Ratas , Animales , Fibroínas/farmacología , Fibroínas/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Quitosano/química , Diálisis Renal , Seda/química , Nervio Ciático/fisiología , Regeneración Nerviosa , Andamios del Tejido/química
20.
Biochem Biophys Res Commun ; 655: 110-117, 2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-36934586

RESUMEN

Kif15, also name kinesin-12, is a microtubule (MT) associate protein, which functions as a regulator of MT-dependent transport or spindle organization. Previous studies reported Kif15 increases in many tumors, however the effect of host Kif15 gene lack on tumor growth is not investigated. In this study, CRISPR/Cas9 mediated Kif15 gene knockout (Kif15-/-) mice were established and HE (Hematoxylin-Eosin) assay revealed no significant differences of morphology in most adult tissues (heart, liver, lung, kidney, and brain) except a retarded development of spleen in adult Kif15-/- mice. RNA sequence analysis of adult spleen tissues of Kif15-/- and Kif15+/+ mice was performed, and the results revealed that a total of 438 mRNAs were significantly differentially expressed in Kif15 knockout spleen, showing the top biological process was immune system process. FCM (Flow Cytometry) assay showed the percentage of CD8+ T lymphocytes notably increased in spleens of 9 w and 12 w old Kif15-/- mice. The CD8+ T lymphocytes are cytotoxic effector cells fighting against tumor. We thus detected the tumor growth in Kif15-/- mice using the melanoma cells inoculated subcutaneously. The tumor size significantly reduced in Kif15-/- mice. We finally detected whether Kif15 dysfunction affects the phagocytic function of macrophages on tumor cells, and the result showed Kif15 inhibitor treated macrophages significantly promoted the phagocytosis in vitro. In summary, this study revealed that the tumor-bearing mice of Kif15 gene deficiency notably inhibited tumor growth due to innate immune activation, which was the first report of the relation of Kif15 on the immunoreactivity.


Asunto(s)
Neoplasias , Linfocitos T , Animales , Ratones , Linfocitos T CD8-positivos/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Neoplasias/metabolismo , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...