Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Sci ; 12(10): 2660-2671, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38592706

RESUMEN

The endo-lysosomal pathway is a major barrier for the trans-epithelial transport of nanoparticles (NPs), but escape strategies could facilitate trans-epithelial delivery. Based on the polarization properties of the epithelium, different escape compartments may result in different exocytosis fates of NPs and further affect the delivery efficiency. Therefore, optimizing the escape sites is critical for trans-epithelial delivery. Here, commonly used PEG-coated-poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles were fabricated as model nanoparticles (MNPs) and the intestinal epithelium was chosen as the polarized epithelium. The MNPs were incubated with different endosomolytic agents for early endosomal escape, late endosomal escape and lysosomal escape, respectively. According to in vitro and in vivo studies, MNPs escaping from early endosomes and late endosomes exhibited stronger capacity for trans-epithelial transport than those escaping from lysosomes. By further probing into the mechanism, we surprisingly found that although MNPs escaping from early endosomes quickly egressed from the apical side of epithelia, they were subsequently followed by "reuptake" via caveolae and trafficked through the endoplasmic reticulum-Golgi apparatus (ER/GA) secretory pathway, achieving efficient trans-epithelial transport; MNPs escaping from late endosomes, which were located near the nucleus, were prone to enter the ER/GA for efficient basolateral exocytosis. However, MNPs escaping from lysosomes were detained within cells by autophagosomes. Collectively, our research suggested that early endosomes and late endosomes were ideal escape sites for trans-epithelial delivery.


Asunto(s)
Endosomas , Exocitosis , Lisosomas , Nanopartículas , Lisosomas/metabolismo , Exocitosis/fisiología , Animales , Nanopartículas/química , Endosomas/metabolismo , Polietilenglicoles/química , Humanos , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Perros , Mucosa Intestinal/metabolismo
2.
J Mater Chem B ; 12(16): 3970-3983, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563351

RESUMEN

Lipoic acid (LA), which has good safety and oral absorption, is obtained from various plant-based food sources and needs to be supplemented through human diet. Moreover, substances with a disulfide structure can enter cells through dynamic covalent disulfide exchange with thiol groups on the cell membrane surface. Based on these factors, we constructed LA-modified nanoparticles (LA NPs). Our results showed that LA NPs can be internalized into intestinal epithelial cells through surface thiols, followed by intracellular transcytosis via the endoplasmic reticulum-Golgi pathway. Further mechanistic studies indicated that disulfide bonds within the structure of LA play a critical role in this transport process. In a type I diabetes rat model, the oral administration of insulin-loaded LA NPs exhibited a more potent hypoglycemic effect, with a pharmacokinetic bioavailability of 5.42 ± 0.53%, representing a 1.6 fold enhancement compared to unmodified PEG NPs. Furthermore, a significant upregulation of surface thiols in inflammatory macrophages was reported. Thus, we turned our direction to investigate the uptake behavior of inflammatory macrophages with increased surface thiols towards LA NPs. Inflammatory macrophages showed a 2.6 fold increased uptake of LA NPs compared to non-inflammatory macrophages. Surprisingly, we also discovered that the antioxidant resveratrol facilitates the uptake of LA NPs in a concentration-dependent manner. This is mainly attributed to an increase in glutathione, which is involved in thiol uptake. Consequently, we employed LA NPs loaded with resveratrol for the treatment of colitis and observed a significant alleviation of colitis symptoms. These results suggest that leveraging the variations of thiol expression levels on cell surfaces under both healthy and diseased states through an oral drug delivery system mediated by the small-molecule nutrient LA can be employed for the treatment of diabetes and certain inflammatory diseases.


Asunto(s)
Compuestos de Sulfhidrilo , Ácido Tióctico , Ácido Tióctico/química , Animales , Compuestos de Sulfhidrilo/química , Administración Oral , Ratas , Humanos , Nanopartículas/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/administración & dosificación , Sistemas de Liberación de Medicamentos , Masculino , Inflamación/tratamiento farmacológico , Ratones , Propiedades de Superficie , Portadores de Fármacos/química , Insulina/metabolismo , Ratas Sprague-Dawley , Tamaño de la Partícula , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Células RAW 264.7
3.
Acta Pharm Sin B ; 13(9): 3876-3891, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37719377

RESUMEN

Protein corona (PC) has been identified to impede the transportation of intravenously injected nanoparticles (NPs) from blood circulation to their targeted sites. However, how intestinal PC (IPC) affects the delivery of orally administered NPs are still needed to be elucidated. Here, we found that IPC exerted "positive effect" or "negative effect" depending on different pathological conditions in the gastrointestinal tract. We prepared polystyrene nanoparticles (PS) adsorbed with different IPC derived from the intestinal tract of healthy, diabetic, and colitis rats (H-IPC@PS, D-IPC@PS, C-IPC@PS). Proteomics analysis revealed that, compared with healthy IPC, the two disease-specific IPC consisted of a higher proportion of proteins that were closely correlated with transepithelial transport across the intestine. Consequently, both D-IPC@PS and C-IPC@PS mainly exploited the recycling endosome and ER-Golgi mediated secretory routes for intracellular trafficking, which increased the transcytosis from the epithelium. Together, disease-specific IPC endowed NPs with higher intestinal absorption. D-IPC@PS posed "positive effect" on intestinal absorption into blood circulation for diabetic therapy. Conversely, C-IPC@PS had "negative effect" on colitis treatment because of unfavorable absorption in the intestine before arriving colon. These results imply that different or even opposite strategies to modulate the disease-specific IPC need to be adopted for oral nanomedicine in the treatment of variable diseases.

4.
Asian J Pharm Sci ; 17(5): 653-665, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36382301

RESUMEN

Glucagon-like peptide-1 receptor agonists (GLP-1 RA) are a series of polypeptides broadly applied in the long-term treatment of type Ⅱ diabetes. However, administration of GLP-RA is mainly through repetitive subcutaneous injection, which may seriously decrease the compliance and safety. Herein, a bio-inspired oral delivery system was designed to enhance the oral absorption of liraglutide (Lira), a kind of GLP-1 RA, by mimicking the natural cholesterol assimilation. 25-hydroxycholesterol (25HC), a cholesterol derivative, was modified on the surfaced of Lira-loaded PLGA nanoparticles (Lira 25HC NPs) and functioned as a "top-down" actuator to facilitate unidirectional transcytosis across the intestinal epithelium. After oral delivery, Lira 25HC NPs displayed improved therapeutic effect as compared with oral free Lira on type Ⅱ diabetes db/db mice, as evidenced by multiple relieved diabetic symptoms including the enhanced glucose tolerance, repressed weight growth, improved liver glucose metabolism, decreased fasting blood glucose, HbA1c, serum lipid, and increased ß cells activity. Surprisingly, the fasting blood glucose, liver glucose metabolism, and HbA1c of oral Lira-loaded 25HC NPs were comparable to subcutaneous injection of free Lira. Further mechanisms revealed that 25HC ligand could mediate the nanoparticles to mimic natural cholesterol absorption by exerting high affinity towards apical Niemann-Pick C1 Like 1 (NPC1L1) and then basolateral ATP binding cassette transporter A1 (ABCA1) overexpressed on the opposite side of intestinal epithelium. This cholesterol assimilation-mimicking strategy achieve the unidirectional transport across the intestinal epithelium, thus improving the oral absorption of liraglutide. In general, this study established a cholesterol simulated platform and provide promising insight for the oral delivery of GLP-1 RA.

5.
Acta Pharm Sin B ; 12(4): 2029-2042, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35847507

RESUMEN

As endogenous courier vesicles, exosomes play crucial roles in macromolecule transmission and intercellular communication. Therefore, exosomes have drawn increasing attention as biomimetic drug-delivery vehicles over the past few years. However, few studies have investigated the encapsulation of peptide/protein drugs into exosomes for oral administration. Additionally, the mechanisms underlying their biomimetic properties as oral delivery vehicles remain unknown. Herein, insulin-loaded milk-derived exosomes (EXO@INS) were fabricated and the in vivo hypoglycemic effect was investigated on type I diabetic rats. Surprisingly, EXO@INS (50 and 30 IU/kg) elicited a more superior and more sustained hypoglycemic effect compared with that obtained with subcutaneously injected insulin. Further mechanism studies indicated that the origin of excellent oral-performance of milk-derived exosomes combined active multi-targeting uptake, pH adaptation during gastrointestinal transit, nutrient assimilation related ERK1/2 and p38 MAPK signal pathway activation and intestinal mucus penetration. This study provides the first demonstration that multifunctional milk-derived exosomes offer solutions to many of the challenges arising from oral drug delivery and thus provide new insights into developing naturally-equipped nanovehicles for oral drug administration.

6.
Nanomaterials (Basel) ; 11(11)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34835878

RESUMEN

The strong spin filtering effect can be produced by C-Ni atomic orbital hybridization in lattice-matched graphene/Ni (111) heterostructures, which provides an ideal platform to improve the tunnel magnetoresistance (TMR) of magnetic tunnel junctions (MTJs). However, large-area, high-quality graphene/ferromagnetic epitaxial interfaces are mainly limited by the single-crystal size of the Ni (111) substrate and well-oriented graphene domains. In this work, based on the preparation of a 2-inch single-crystal Ni (111) film on an Al2O3 (0001) wafer, we successfully achieve the production of a full-coverage, high-quality graphene monolayer on a Ni (111) substrate with an atomically sharp interface via ambient pressure chemical vapor deposition (APCVD). The high crystallinity and strong coupling of the well-oriented epitaxial graphene/Ni (111) interface are systematically investigated and carefully demonstrated. Through the analysis of the growth model, it is shown that the oriented growth induced by the Ni (111) crystal, the optimized graphene nucleation and the subsurface carbon density jointly contribute to the resulting high-quality graphene/Ni (111) heterostructure. Our work provides a convenient approach for the controllable fabrication of a large-area homogeneous graphene/ferromagnetic interface, which would benefit interface engineering of graphene-based MTJs and future chip-level 2D spintronic applications.

7.
Biomater Sci ; 9(8): 2903-2916, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33599658

RESUMEN

Ligand-modified nanoparticles (NPs) have been widely used in oral drug delivery systems to promote endocytosis on intestinal epithelia. However, their transcytosis across the intestinal epithelia is still limited. Except for complex intracellular trafficking, recycling again from the apical sides into the intestinal lumen of the endocytosed NPs cannot be ignored. In this study, we modified NP surfaces with angiopep-2 (ANG) that targeted the low-density lipoprotein receptor-related protein 1 (LRP-1) expressed on the intestine to increase both the apical endocytosis and basolateral transcytosis of NPs. Notably, our finding revealed that ANG NPs could increase the apical expression and further basolateral redistribution of LRP-1 on Caco-2 cells, thus generating an apical-to-basolateral absorption pattern. Because of the enhanced transcytosis, insulin loaded ANG NPs possessed much stronger absorption efficiency and induced maximal blood glucose reduction to 61.46% in diabetic rats. Self-regulating the distribution of receptors on polarized intestine cells to promote basolateral transcytosis will provide promising insights for the rational design of oral delivery systems of protein/peptide drugs.


Asunto(s)
Diabetes Mellitus Experimental , Nanopartículas , Preparaciones Farmacéuticas , Autocontrol , Animales , Células CACO-2 , Humanos , Péptidos , Ratas
8.
J Mater Chem B ; 9(6): 1707-1718, 2021 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-33496710

RESUMEN

Intestinal epithelial cells are the primary biological barriers for orally administrated nano-formulations and the delivered protein drugs. Thereinto, besides the cellular uptake, intracellular trafficking pathway and the related exocytosis are of great importance to the trans-epithelial transport of drug-loaded NPs. Herein, inspired by the physiological functions of Golgi apparatus for secreting proteins out of cells, Golgi localization-related amino acid l-cysteine (Cys) was modified on the surface of NPs to see whether and how this modification could guide the Golgi pathway-related transport and facilitate the exocytosis of drug-loaded NPs. Meanwhile, cell-penetrating peptide octa-arginine (R8) was co-modified to increase the cellular uptake. The proportion of R8 and Cys modification was explored to get the best effect of endocytosis and exocytosis of NPs. As a result, 25%R8 + 75%Cys NPs with most Cys modification showed efficient transcytosis with the highest transcytosis/endocytosis ratio (0.87). Interestingly, exocytosis mechanism studies indicated that they trafficked through the Golgi secretory pathway and bypassed lysosomes due to Cys modification. The detailed Golgi position mechanism studies further suggested that the thiol group from Cys was important for mediating Golgi transport. In particular, competitive inhibition studies demonstrated that Cys-modified NPs were more conducive to their exocytosis after being transported through the Golgi secretory pathway. We proved that cargos transported via Golgi apparatus tended to be trafficked out of the cells and avoid degradation, which contributed to the transcytosis of 25%R8 + 75%Cys NPs in vitro. Inspiringly, compared with unmodified NPs, 25%R8 + 75%Cys NPs also exhibited promoted intestinal penetration and oral absorption in vivo. Oral delivery of insulin-loaded 25%R8 + 75%Cys NPs showed stronger hypoglycemic effects in diabetic rats. In summary, this work provides a strategy for complying with the physiological functions of Golgi apparatus for secreting to facilitate the exocytosis of NPs, thus further improving the oral absorption of loaded protein drugs.


Asunto(s)
Exocitosis/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Insulina/farmacología , Administración Oral , Animales , Transporte Biológico , Humanos , Insulina/administración & dosificación , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Nanopartículas/administración & dosificación , Nanopartículas/química , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Propiedades de Superficie , Células Tumorales Cultivadas
9.
Biomaterials ; 262: 120323, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32896816

RESUMEN

Overcoming epithelial barriers to enhance drug absorption is a major challenge for nanoparticle (NP)-based mucosal delivery systems. With adequate physicochemical properties, the transepithelial delivery of NPs may be efficiently enhanced. However, little is known about the role of elasticity on the transport of NPs across the polarized epithelium, especially the processes and mechanisms of endocytosis, intracellular trafficking and exocytosis. In this study, we discovered that zwitterionic hydrogel NPs with varied elasticity displayed considerably different oral insulin absorption on diabetic rats. It was found that NP elasticity strongly shaped the transepithelial behaviors of NPs, and the increase of elasticity boosted the transcytosis by improving both endocytosis and exocytosis. Elasticity also showed a profound effect on the intracellular trafficking routes of NPs, which was closely related to distribution of NPs in exocytosis pathway and their intra-endosome sphere-to-ellipsoid shape transformation. Importantly, NPs with zwitterionic surface experienced more efficient basolateral exocytosis than apical exocytosis, while the elasticity-related exocytosis enhancement appeared to be non-selective. Therefore, tailored elasticity could promote mucosal transcytosis of NPs, which was able to be further improved with biomimetic zwitterionic surface. This study may provide important knowledge for the design of functional nanovehicles to efficiently overcome mucosal epithelial barriers in the future.


Asunto(s)
Diabetes Mellitus Experimental , Nanopartículas , Animales , Biomimética , Células CACO-2 , Elasticidad , Humanos , Ratas , Transcitosis
10.
J Control Release ; 323: 151-160, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32277961

RESUMEN

The epithelium is a formidable barrier to the absorption of orally delivered nano-vehicles. Here, by exploring a nutrient-absorption pathway, a self-amplified nanoplatform was developed to promote apical-to-basolateral transcytosis across the epithelium. The nanoplatform consisted of fructose-modified polyethylene glycol coated nanoparticles (Fru-PEG NPs) and a sweetener, acesulfame potassium (AceK) in combination. Compared with regular PEGylated nanoparticles, the combination exhibited a 3.9-fold increase of absorption following oral gavage in mice and an 8.8-fold increase of transepithelial transport in vitro. When encapsulated with insulin, the combination regimen elicited a stronger hypoglycemic effect, with a pharmacological bioavailability of 18.56%, which was 3.2-fold higher than that of PEG NPs. We demonstrated that a large proportion of Fru-PEG NPs underwent internalization and basolateral exocytosis via a glucose transporter type 2 (GLUT2)-dependent process, which is an important fructose assimilation pathway. Notably, co-administered AceK could prime the epithelial cells with increased apical distribution of GLUT2, thus amplifying this unidirectional transcytosis of nanoparticles. This work is the first proof-of-concept study of manipulating and amplifying a nutrient-absorption pathway to facilitate the unidirectional trans-epithelial transport of orally administered nano-delivery vehicles.


Asunto(s)
Nanopartículas , Transcitosis , Animales , Células CACO-2 , Humanos , Insulina , Ratones , Nutrientes
11.
J Mater Chem B ; 8(13): 2636-2649, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32129375

RESUMEN

Surface features are key to the transcellular transport of nanoparticles (NPs) across intestinal epithelium cells. Endowing the NPs with specific surface features adapted to the physiological conditions of the gastrointestinal (GI) tract holds great potential for the oral delivery of peptide/protein drugs. Therefore, in this work, a glutamic acid conjugated amphiphilic dendrimer (Glu-APD) was synthesized to replace the widely used 1,2-distearoyl-sn-glycero-3-phosphatidyl-ethanolamine-polyethylene glycol (DSPE-PEG) in the preparation of poly(lactic-co-glycolic acid) (PLGA)-based NPs. Glu-APD could provide the formed NPs (Glu-APD NPs) with specific surface features of dendritic oligopeptides. With such surface features, Glu-APD NPs exhibited a 7.78-fold increase in cellular uptake and a 2.17-fold increase in the transepithelial transport amount compared with those of the DSPE-PEG2000 modified counterparts (P NPs). Instead of a dominant clathrin-mediated endocytosis as shown by P NPs, Glu-APD can provide the NPs with optional endocytosis pathways (i.e. clathrin-mediated, caveolae-mediated and micropinocytosis pathways), with the involvement of oligopeptide transporters and amino acid transporters, subsequently leading to a broadened intracellular trafficking route via the endoplasmic reticulum (ER) and Golgi apparatus. Furthermore, l-glutamic acid (l-Glu), a natural nutrient, could specifically facilitate the exocytosis of Glu-APD NPs, indicating an amino-acid-associated intracellular trafficking. Oral administration of insulin-loaded Glu-APD NPs could also achieve a good hypoglycemic effect with a relative bioavailability of 10.04%, which is 1.89-fold higher than that of P NPs and 5.20-fold higher than insulin solution. Safety evaluations further verified the biocompatibility of Glu-APD NPs and the related materials. The results confirmed the feasibility of introducing Glu-APD to NPs for improving the oral delivery of insulin. With the surface features of dendritic peptide, Glu-APD could facilitate oligopeptide/amino-acid-associated transport of the related NPs, which might be considered as an advantage under physiological conditions. This work might also be considered as a valid reference for the construction of highly efficient oral delivery systems.


Asunto(s)
Dendrímeros/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Nanopartículas/química , Oligopéptidos/química , Administración Oral , Animales , Dendrímeros/administración & dosificación , Diabetes Mellitus Experimental/inducido químicamente , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química , Insulina/administración & dosificación , Insulina/química , Masculino , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Nanopartículas/administración & dosificación , Oligopéptidos/administración & dosificación , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley , Estreptozocina , Propiedades de Superficie , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...